

Safety Behavior in the Laboratory among University Students

Khairul Hafezad Abdullah¹ and Fadzli Shah Abd Aziz²

Received: April 4, 2020 Revised: May 21, 2020 Accepted: May 25, 2020

Managing laboratory safety at universities is critical due to a large number of laboratory accidents involving students that have been reported worldwide. This study primarily aimed to examine how safety knowledge and safety motivation directly affect safety behavior in laboratories among students. The study was based on a random sample of 361 undergraduates from five public universities in Malaysia. Data were analyzed using Partial Least Square Structural Equation Modelling (PLS-SEM) SmartPLS 3.3.2. The findings indicated that safety knowledge ($\beta = .30, p < .001$) and safety motivation ($\beta = .15, p = .02$) directly affected safety behavior among students in the laboratory. Furthermore, safety commitment mediated the relationship between safety knowledge ($\beta = .13, p < .001$) and safety motivation ($\beta = .17, p < .001$) on safety behavior among students in the laboratory. Safety commitment presented more substantial mediating effect compared to the direct effect of safety motivation and safety behavior. Accordingly, safety commitment was an essential element in enhancing safety motivation and safety behavior among students in the laboratory. These findings also affirmed that the combination of the subjective norm (safety motivation) and the intention (safety commitment) had a significant effect on safety behavior in the laboratory among students. In order to increase safety behavior in the laboratory, university managements should make continuous and concerted efforts through regulated guidelines to emphasize students' commitment. This highlights the importance of applying the theory of planned behavior-based educational approach and research intervention by the university stakeholders to enhance laboratory safety behavior among students.

Keywords: theory of planned behavior, safety knowledge, safety motivation, safety commitment, PLS-SEM

The scope of managing safety and health in educational institutions is rather wide, especially in a university context, where it deals with numerous facilities, such as laboratories, hostels, and cafeterias. These facilities may cause various safety and health issues, which would require specific approaches to resolve. A laboratory setting, for example, may contain multiple hazards, including chemicals and hazardous equipment. This realistic concern highlights that students often faced a variety of risks, dangers, and threats in the laboratory that have had resulted in accidents (Ismail et al., 2015). Horrendous accidents in university laboratories have occurred globally. Some cases in point are the death of Sheri Sangji at the University of California Los Angeles in the United States (Allen, 2014), the chemical explosion at the Beijing Jiatong University laboratory in China (Lixin, 2018), a professor died after a severe lab explosion at the Technion-Israel Institute of Technology (Staff, 2019) and, a student was seriously injured in a chemical spill incident at the University of Kent (Chantler-Hicks, 2020).

¹ PhD Scholar, School of Business Management, Universiti Utara Malaysia, Malaysia.
E-mail: ezadne088@gmail.com

² Associate Professor, School of Business Management, Universiti Utara Malaysia, Malaysia

Laboratory accidents at universities cannot be prevented by engineering control systems, although the system might increase laboratory testing performances (Steward et al., 2016). Gibson et al. (2014) noted that accidents in laboratories in universities were still rising despite engineering control systems have been implemented. Thus, Purohit (2018) asserted that the need to develop, consolidate, and enhance safety culture, especially related to safety behavior, is highly anticipated. This is because safety behavior is revealed as a crucial action that encourages safety compliance and safety participation. Previous safety researchers have clearly distinguished these two categories of safety behaviors. Safety compliance denotes generally mandated safety behaviors for the maintenance of safety at work; however, safety participation grants voluntary safety practices leading to a safe organizational environment (Neal et al., 2000). Based on safety behavior in a laboratory, Steward et al. (2016) indicated that critical issues were aligned to the changing students' attitude. Thus, university management should carefully develop, formulate, and monitor laboratory safety policies (Schröder et al., 2016). The lecturers and laboratory personnel should also participate and take responsibility for implementing laboratory safety policies (Staehle et al., 2015). In addressing issues with regards to safety behavior in a university laboratory, safety compliance is a troublesome factor for students to undertake. A study conducted by Su and Hsu (2008) found that 49 % of laboratory accidents at a university in Taiwan were caused by students who had not complied with safety regulations.

Previous studies also revealed that before conducting experiments, students did not perform safety assessments. A research conducted by Ayi and Hon (2018) found that before performing practical work, 27% of students had not done any risk assessment. Another study revealed that 50 % of respondents did not use safety information to design their experimental procedures (McEwen et al., 2018). Sieloff et al. (2013) found that 65 % of students did not wear gloves while conducting dangerous experiments. Therefore, it is evident that students working in laboratories have had perpetually been in risky and unsafe contexts. According to Christian et al. (2009) and Laurent et al. (2020), precarious ideas on safety behavior provide an opportunity to integrate past and future research to analyze individuals and situational circumstances related to safety behaviors. Other factors, such as safety knowledge and safety motivation, were also closely linked to safety behaviors and need to be discussed further (Laurent et al., 2020). Therefore, this study would investigate how safety knowledge and safety motivation directly affect safety behavior in the laboratory among students. Also, this study discusses the mediating effect of safety commitment on the relationship between safety knowledge and safety motivation in the laboratory among students.

Literature Review and Hypotheses Development

Several studies have examined safety behavior in the laboratory among students by concerted safety climate (Salazar-Escoboza et al., 2020), safety leadership (Abdullah & Abd Aziz, 2020), and risk perception (Álvarez-Chávez et al., 2019). As a result, the studies helped the researchers to understand about laboratory safety and revealed consideration of attitudes, beliefs, and intentions towards safety behavior. These factors were related to the basic tenet of the theory of planned behavior (TPB) developed by Ajzen (1991). TPB has been used to analyze various issues related to safety behavior. Fogarty and Shaw (2010) studied human

factors related to TPB-based aviation maintenance. Jafaralilou et al. (2019) investigated the impact of TPB-based training on the use of helmets among workers in cement factories. Liu et al. (2020) investigated self-interest motivation and pro-social motivation on the individual's intention. Fundamentally, the TPB was derived from the theory of reasoned action (TRA). Three latent constructs in TPB has clarified intention, namely behavioral attitude, subjective norm (SN), and perceived behavioral control (PBC) and possibly associated due to common external causes and correlations (Heiny et al., 2019). The intention to induce behavior is believed by the TPB paradigm (Ajzen, 2015). Therefore, the researchers intended to study the safety commitment as an intention to comprehend behavioral change among students towards laboratory safety, the SN is discussed based on safety motivation, and safety knowledge is treated as a PBC. The perceived social pressure to perform the behavior is referred to SN, whereas PBC refers to the perceived ease of performing the expression of interest. The generalized concept of competence belief is applied to PBC (Heiny et al., 2019).

Safety Knowledge and Safety Behavior

Safety knowledge is defined as comprehension of acquired hazard and safety controls through safety training (Goswami et al., 2011). Christian et al. (2009) and Keiser and Payne (2019) pointed out that safety knowledge had a relationship with safety behavior, including safety compliance and safety participation. This is because safety knowledge increases vigilance and makes people more responsible and alert while conducting their tasks. A study conducted by Gressgård (2014) on employees of petroleum, oil, and gas industries indicated that safety compliance was influenced by safety knowledge. Nevertheless, a study conducted by Al-Zyoud et al. (2019) expressed that comprehension of safety symbols and hazards in the laboratory among chemical engineering students at the German-Jordanian University in Jordan was mild. This showed that students' attitudes towards laboratory safety were lacking and needed more safety training and awareness activities or programs in the university. The association between safety knowledge and safety behavior could also be clarified by the connection of safety knowledge and safety participation. Individuals with stable emotions are considered fit to take part in safety activities, disseminate safety information, and help colleagues resolve technical safety problems (Mirza et al., 2019). After having considered the association between safety knowledge and safety behaviors as found in previous literature, the following hypothesis was proposed in this study:

Hypothesis 1: Safety knowledge has a direct effect on safety behavior.

Safety Motivation and Safety Behavior

According to Griffin and Neal (2000), Griffin and Curcuruto (2016), and Sawhney and Cigularov (2019), safety motivation is the desire of an individual to perform any job safely and be able to reduce accidents and injuries. The effect of safety motivation on safety behavior was contradictory; Chen and Chen (2014) found that safety motivation had a positive impact on safety compliance, rather than safety participation. Neal and Griffin (2006), however, found that safety motivation could improve safety participation but did not affect safety compliance. A study conducted by Wen Lim et al. (2018) and Abdulla and Abd Aziz (2020) showed that safety motivation had an impact on safety compliance and safety participation. Conversely, Pedersen and Kines (2011) found that safety motivation had a

positive relationship to compliance with safety as safety motivation was able to motivate an individual to comply with safety rules and procedures to increase safety goals. This association means that an individual is tempted by himself to meet the essential needs (Rybniček et al., 2019). The purpose of an individual is often changed because each individual has different needs depending on their interests. In the case of employees, the primary motivation that led them to perform a good job was a beneficial incentive or wage (Grant, 2019). In this regard, employers should ensure that they can provide employees with a compelling motivation to increase their level of safety at work. Based on previous discussion, the following hypothesis was proposed:

Hypothesis 2: Safety motivation has a direct effect on safety behavior.

Mediating Effect of Safety Commitment

Safety knowledge and safety motivation are proposed to affect safety behavior via safety commitment. Safety commitment is defined as the degree to prevent risky activities, obey procedures, and trust the effectiveness of safety initiatives of the organization (Stackhouse & Turner, 2019). Safety commitment among students becomes a vital element in reducing accident rates in the laboratory (Salazar-Escoboza et al., 2020). A study conducted by Mostafa and Moments (2014) on student safety knowledge, attitudes, and behaviors in the laboratory showed that 71.40% of students reported using safety equipment, and 61.20% reported using safety equipment while performing hazardous research. Tsuji et al. (2016) found that safety knowledge enhanced students' commitment to safety, particularly in chemical safety. This situation was owed to the safety knowledge that provided students' details on proper handling and disposing of chemicals. Similarly, Marendaz et al. (2011) and Pedersen and Kines (2011) stated that the laboratory safety program at the university enhanced student commitment and safety knowledge. Jeknavorian (2016) found that students were committed to monitoring laboratory accidents that could occur. However, their motivation was still weak due to the lack of supervision by lecturers. In light of the existing research, the proposed hypotheses were:

Hypothesis 3: Safety knowledge has a direct effect on safety commitment.

Hypothesis 4: Safety motivation has a direct effect on safety commitment.

Hypothesis 5: Safety commitment has a direct effect on safety behavior.

Hypothesis 6: Safety commitment mediates the relationship between safety knowledge and safety behavior.

Hypothesis 7: Safety commitment mediates the relationship between safety motivation and safety behavior.

Conclusion of Literature Review and Research Gap

The present research investigated factors influencing students' safety behavior in laboratory safety. In line with the TPB, the researchers concentrated on SN, PBC, and safety behavior expectations, as shown in Figure 1. The researchers used PLS-SEM to test the underlying measurement model. In this study, safety commitment was added to the basic model of TPB to strengthen the relationship between SN, PBC and safety behavior in the

laboratory. The objective was to understand the behavioral change among students towards laboratory safety. This is because the researchers intended to examine the role of safety commitment that could help improve safety knowledge, safety motivation, and safety behavior among students, which in turn, could lead to increase laboratory safety in universities. Ajzen (2015) claimed that any variables could also be included in a TPB model, but only behavioral beliefs that are strongly correlated with behavioral attitudes have the ability to mediate the influence of the variable on purpose and have the same impact on normative and control beliefs.

Methodology

Research Design and Instruments

This study employed a survey method using questionnaires with the 21-item scale. Safety knowledge was measured using the 3-item scale, safety motivation was measured using the 5-item scale, safety compliance was measured using the 3-item scale, and safety participation was measured using the 3-item scale. The measurement items were all developed by Neal et al. (2000). The 7-item to measure safety commitment was developed by Wu and Lee (2003). A five-point Likert scale was used to obtain feedback from the respondents (scale 1 = strongly disagreed; scale 5 = strongly agreed).

Sampling, Data Collection and Analyses

The population of this study consisted of 1295 chemical engineering students at five public universities in Malaysia. Chemical engineering students were chosen because they often used harmful chemicals and high-pressure gases as required in their chemical engineering courses (Vogel & Tomasko, 2015). Sample calculator software Raosoft (2004), was used to obtain 297 samples. This study performed a 40% oversampling procedure, with a total of 416 sets of questionnaires to manage low feedback rates (Salkind, 2018). Between October and December 2019, a total of 374 sets of questionnaires were obtained, with an 89.90 % response rate. After preliminary analysis, the number of valid questionnaires was ascertained as 361. Partial Least Square Structural Equation Modeling (PLS-SEM) SmartPLS 3.3.2 was applied to assess the measurement and the structural model (Hair et al., 2017). According to Hair et al. (2017), the assessment of the measurement model is carried out by (i) the reliability test, (ii) the convergent test, and (iii) the discriminant test. The assessment of structural model comprises collinearity, path coefficient, coefficient of determination (R^2), effect size (f^2), and Stone Geisser predictive relevance (Q^2) (Ramayah et al., 2018).

Findings

Demographic Data

In this study, data was collected from a total of 361 students. Among them 39.30% were male, 60.70% were female, 58.45% were aged between 19 to 21 years old, 41.00% were aged between 22 to 24 years old, and 0.55% were aged over 24 years old. As for qualifications,

20.20% of respondents were diploma-holders, 9.70% of respondents held high school certificates, 54.80% of respondents held matriculation certificates, and 15.20% of respondents had foundation in science certificates.

Assessment of Measurement and Structural Model

Table 1 designated construct reliability and convergent validity with recommended values above .70, respectively (Hair et al., 2017). The values of the discriminant validity were also fulfilled the Heterotrait-Monotrait ratio (HTMT .85) (Henseler et al., 2015). The results for the structural model in table 2 and figure 1 were all significant and provide support for Hypotheses 1, 2, 3, 4 and 5. Specifically, safety knowledge has a significant direct effect on safety behavior ($\beta = .30, p < .001$), safety motivation has a significant direct effect on safety behavior ($\beta = .15, p = .02$), safety knowledge has a significant direct effect on safety commitment ($\beta = .38, p < .001$), safety motivation has a significant direct effect on safety commitment ($\beta = .50, p < .001$), and finally, safety commitment has a significant direct effect on safety behavior ($\beta = .34, p < .001$).

The values of the determination coefficient (R^2), predictive relevance (Q^2), and size effect toward R^2 (f^2) were examined in this study. The R^2 value of safety behavior is .50, meaning that 50.00% of the variance in safety behavior could be clarified by safety knowledge, safety motivation, and safety commitment. The effect size was considered weak to moderate effect (Chin, 1998). The R^2 value for safety commitment is .61. Thus, 61.00 % of the variance in safety commitment could be clarified by safety knowledge and safety motivation with moderate to substantial effect (Chin, 1998). With regards to the aspect of relevance prediction (Q^2), safety behavior was analyzed as .41 and indicated that 41.00 % of the variance in safety knowledge, safety motivation, and safety commitment had predictive relevance towards safety behavior (Hair et al., 2017). The value of Q^2 for safety commitment was .60. Thus, 60.00 % of the variance in safety knowledge and safety motivation was able to predict safety commitment (Hair et al., 2017). Based on the effect size (f^2) proposed by Hair et al. (2017), safety commitment had a small effect (.09) on safety behavior. Safety knowledge had a minimal effect (.10) on safety behavior and moderate effect (.24) on safety commitment. Consequently, safety motivation had a small or low effect (.02) on safety behavior and a substantial or considerable effect (.42) towards safety commitment.

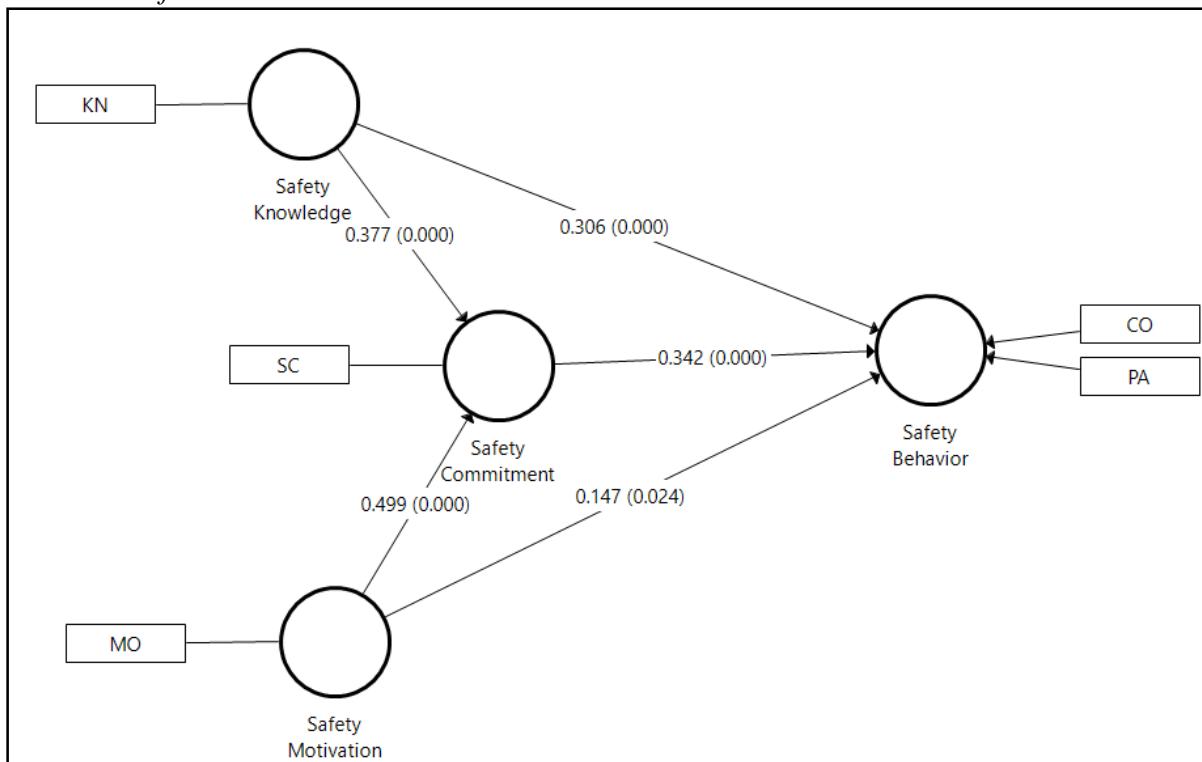
Assessment of the Mediating Effect of Safety Commitment

Table 3 shows the results of the mediating effect of safety commitment. The mediation effect results suggest that safety commitment has a significant mediating effect on the relationship between safety knowledge and safety behavior ($\beta = .13, p < .001$). Thus the hypothesis 6 was therefore supported. This study also showed a significant mediating effect of safety commitment on the relationship between safety motivation and safety behavior ($\beta = .17, p < .001$), providing support to hypothesis 7. The data analysis also indicated that safety commitment has a more substantial mediating effect compared to the direct effect of safety motivation and safety behavior.

Table 1
Construct Reliability and Convergent Validity

Construct	Indicator	Outer loading	Cronbach's Alpha	Composite Reliability	Average Variance Extracted (AVE)	Convergent Validity (AVE > .50)
Safety Commitment	SC1	.69	.91	.93	.66	Yes
	SC2	.84				
	SC3	.86				
	SC4	.82				
	SC5	.81				
	SC6	.84				
	SC7	.83				
Safety Compliance	CO1	.86	.87	.92	.79	Yes
	CO2	.91				
	CO3	.89				
Safety Knowledge	KN1	.88	.87	.92	.79	Yes
	KN2	.91				
	KN3	.86				
Safety Motivation	MO1	.87	.92	.94	.76	Yes
	MO2	.90				
	MO3	.89				
	MO4	.88				
	MO5	.82				
Safety Participation	PA1	.85	.84	.90	.76	Yes
	PA2	.86				
	PA3	.89				

Note. SC = Safety commitment; CO = Safety compliance; KN = Safety knowledge; MO = Safety motivation; PA = Safety participation


Table 2
Assessment of Structural Model (Direct Effect)

Estimated Paths	Original Sample (β)	Standard Deviation	t-values	p-values
Hypothesis 1: Safety Knowledge → Safety Behavior				
	.30	.07	4.46	$p < .001$
Hypothesis 2: Safety Motivation → Safety Behavior				
	.15	.06	2.34	$p = .02$
Hypothesis 3: Safety Knowledge → Safety Commitment				
	.38	.07	5.33	$p < .001$
Hypothesis 4: Safety Motivation → Safety Commitment				
	.50	.07	6.70	$p < .001$
Hypothesis 5: Safety Commitment → Safety Behavior				
	.34	.07	4.87	$p < .001$

Table 3
Assessment of the mediating effect of safety commitment

Mediated Paths	Original Sample (β)	Standard Deviation	t-values	p-values
Hypothesis 6: Safety Knowledge → Safety Commitment → Safety Behavior	.13	.03	4.33	$p < .001$
Hypothesis 7: Safety Motivation → Safety Commitment → Safety Behavior	.17	.05	3.39	$p < .001$

Figure 1
The Result of The Structural Model

Note. SC = Safety commitment; CO = Safety compliance; KN = Safety knowledge; MO = Safety motivation; PA = Safety participation

Discussion

In this study, safety knowledge was used to represent the PBC construct in the TPB model to denote students' interpersonal ease and challenge perceptions (Ajzen, 2015). This is because knowledge refers to the ability and determinant of individuals to act safely through the learning process, such as participating in safety training. Consequently, safety knowledge obtained through safety training had a critical impact on safety commitment among students in responding to emergencies and to act safely in the laboratory. This study was able to support the research conducted by Al-Zyoud et al. (2019) that mild safety behavior among students was due to a lack of safety knowledge and limited safety training. Also, the findings of this study affirmed the research conducted by Goswami et al. (2011) that safety knowledge

is an understanding of the hazards and safety regulations expanded via safety training. Therefore, laboratory safety training for students is required and should be made a mandatory practice in year 1 at universities or prior to the commencement of any laboratory-related work at universities.

As predicted, safety motivation directly affects safety behavior. The findings in this study confirmed the interpretation by Pedersen and Kines (2011) that safety motivation had a positive relationship with safety behavior due to the credibility of the management to influence the individual to comply with safety rules and regulations. The importance of lecturers demonstrating safety compliance could also influence student safety motivation by promoting students' safety commitment to reduce the risk of accidents and encouraging others to act safely in the lab (Wen Lim et al., 2018; Abdulla & Abd Aziz, 2020). The commitment of lecturers in providing safety slogans and posters could have been a positive safety motivation accomplished in this study. Safety slogans and posters are a valuable means to influence student safety behavior and should be prioritized to be implemented at universities. Safety motivation in this study was able to represent the SN construct in TPB model (Ajzen, 2015). This is because the SN is affected by internal and external factors (Ajzen, 1991; 2015). Internal factors refer to internally controllable behavior, for instances, skills, trust, and ability to perform behavior (Armitage et al. 1999). External factors refer to behavior that can be externally controllable such as behavioral therapy (Kidwell & Jewell, 2003).

Safety commitments could mediate the relationship between safety knowledge, safety motivation, and safety behavior. The safety commitment among students examined in this study was the willingness of students to participate in safety training, to comply with safety regulations, to enhance laboratory safety, to provide an opinion on safety improvements, to enforce standard operating procedures (SOPs), to maintain the cleanliness of laboratories and to maintain the functionality of safety equipment. A review of all the information related to safety commitment indicated a significant effect. The safety commitment of students might be affected by their attitude to participate in safety training at universities. The participation of students in safety training may increase their commitment to avert the hazards identified in the laboratory (Whithanage & Priyadarshani, 2016). Indirectly, the safety commitment of students may reduce injuries and accidents in the laboratory. The study also supports the revelations by Taylor and Snyder (2017) that safety commitment among students encourages them to act safely in the laboratory. University management should, therefore, enhance and make it a mandatory practice for all students required to use the laboratories to undergo laboratory safety activities and programs to increase and ensure safety commitment among students.

The study also showed that safety commitment could have a significant mediating effect on the relationship between safety knowledge and safety behavior. This finding was also consistent with the concept of the TPB, which is the PBC (safety knowledge) that must be carried out through a mediator, i.e., intention (safety commitment). Hence, the results in this study were able to provide a clear point that safety knowledge is reinforced through learning activities that can increase students' understanding of safety in the laboratory. Furthermore, safety knowledge can increase students' intentions to improve safety behavior in the laboratory. Indirectly, the combination of safety knowledge and safety commitment was able to strengthen safety behavior in the laboratory among students.

If students did not have proper safety knowledge, they have less intention of experimenting in the laboratory safely, and then they cannot change their behavior towards safety. From this study, the researchers can also enhance their understanding of the studies carried out by Al-Zyoud et al. (2019), Marendaz et al. (2011), and Tsuji et al. (2016) that skills, training, and awareness of students on laboratory safety can be improved through safety commitment as an intention to change their behavior. Consequently, the combination of safety knowledge and safety commitment will enable students to engage in safety activities and to prioritize safety during experiments in the laboratory.

In relation to safety motivation, this study found that safety commitment among students was able to have a more significant mediation effect rather than have a direct effect. Safety commitment has proved to be a crucial factor in enhancing students' safety motivation to experiment safely in the laboratory. As a result, the desire for safety among students should enable students to refrain from safety negligence leading to accidents and injuries in laboratories. This study also found that safety commitments can increase the relationship between safety motivation and safety behavior among students. Thus, the respective university managements should have the will to consider official gazette regulations on safety commitment among students as an integral part of laboratory safety management at their premises officially.

The findings of this study support a previous study conducted by Kamaruddin and Yazit (2011) that students' willingness to comply with safety enables them to experiment safely by following laboratory safety regulations. This affirmation provided a better understanding of the study conducted by Hendra and Neni (2015) and Jeknavorian (2016) that poor safety motivation among students needs an ethical commitment to safety through the willingness of students, such as participation in safety training, adherence to safety regulations and standard operating procedures (SOPs). Indirectly, these results also showed that safety commitment was able to fulfil the intention construct in TPB. Thus, good intention (safety commitment) and safety motivation provide a more substantial effect on the improvements in safety behavior among students.

Research Contributions

The critical contribution of this study is the input and awareness it provides by demonstrating that TPB is a sufficient theory to understand safety behavior in the laboratory among students. The combination of the SN (safety motivation) and the intention (safety commitment) has become a new innovative invention. Safety motivation among students relies on each students' personal safety commitment to change their safety behavior. Thus, university managements should make continuous and concerted efforts through regulated guidelines to emphasize students' commitment to enhancing laboratory safety at universities.

Research Limitations and Guidance for Future Research

The limitations of this study were due to the scope of laboratory safety, which was rather general. The scope of laboratory safety at universities should cover specific aspects such as chemical safety, radiation safety, and fire safety to address laboratory safety at universities more constructively and continuously. Finally, for future research, the study of safety behavior in the laboratory among students in universities should consider pervasive personality traits as a moderating effect on the relationship between safety knowledge, safety motivation, safety commitment, and safety behavior. Safety motivation also needs to be

examined explicitly by dividing it into intrinsic and extrinsic safety motivation to be able to identify and assess the types of motivation that might effectively affect student safety behavior in the laboratory. This is deemed essential to ensure that laboratory safety behavior related practices and awareness is heightened to a level that it becomes a healthy culture among all university undergraduates and lecturers who use the laboratories. This research recommends that stakeholders, such as university administrators or policymakers, should have an educational program to educate students, as well as a research intervention on TPB-based education to increase laboratory safety at universities.

Compliance with Ethical Standards

The participants in this study were protected by keeping all their personal details in confidence. They had participated voluntarily and could withdraw at any time. The authors note that this research was conducted in the absence of any commercial or financial aid.

References

Abdullah, K. H., Abd Aziz, F. S. (2020). Safety behaviour in the laboratory among chemical engineering students: An S-O-R paradigm. *TEST Engineering and Management*, 83 (May-June 2020), 22330-22346.

Ajzen, I. (1991). The theory of planned behavior. *Organizational Behavior and Human Decision Processes*, 50(2), 179-211. [https://doi.org/10.1016/0749-5978\(91\)90020-T](https://doi.org/10.1016/0749-5978(91)90020-T)

Ajzen, I. (2015). Consumer attitudes and behavior: The theory of planned behavior applied to food consumption decisions. *Italian Review of Agricultural Economics*, 70(2), 121-138. <https://doi.org/10.13128/REA-18003>

Allen, K. (2014, March 30). A young lab worker, a professor and a deadly accident. *The Star*. https://www.thestar.com/news/world/2014/03/30/a_young_lab_worker_a_professor_a_na_a_deadly_accident.html

Álvarez-Chávez, C. R., Marín, L. S., Pérez-Gamez, K., Portell, M., Velazquez, L., & Muñoz-Osuna, F. (2019). Assessing college students' risk perceptions of hazards in chemistry laboratories. *Journal of Chemical Education*, 96(10), 2120-2131. <https://doi.org/10.1021/acs.jchemed.8b00891>

Al-Zyoud, W., Qunies, A. M., Walters, A. U. C., & Jalsa, N. K. (2019). Perceptions of chemical safety in laboratories. *Safety*, 5(2), 1-18. <https://doi.org/10.3390/safety5020021>

Armitage, C. J., & Conner, M. (1999). The theory of planned behaviour: Assessment of predictive validity and perceived control. *British journal of social psychology*, 38(1), 35-54. <https://doi.org/10.1348/014466699164022>

Ayi, H. R., & Hon, C. Y. (2018). Safety culture and safety compliance in academic laboratories: A Canadian perspective. *Journal of Chemical Health & Safety*, 25(6), 6-12. <https://doi.org/10.1021/acs.chas.8b25606>

Chantler-Hicks, L. (2020, February 25). Canterbury student taken to hospital after chemical spill at University of Kent campus. *Kent Online*. <https://www.kentononline.co.uk/canterbury/news/chemical-spill-leaves-student-in-hospital-222689/>

Chen, C. F., & Chen, S. C. (2014). Measuring the effects of safety management system practices, morality leadership and self-efficacy on pilots' safety behaviors: Safety motivation as a mediator. *Safety Science*, 62, 376-385. <https://doi.org/10.1016/j.ssci.2013.09.013>

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), *Modern methods for business research* (pp. 295-336). Lawrence Erlbaum Associates.

Christian, M. S., Bradley, J. C., Wallace, J. C., & Burke, M. J. (2009). Workplace safety: A meta-analysis of the roles of person and situation factors. *Journal of Applied Psychology*, 94(5), 1103–1127. <https://doi.apa.org/doi/10.1037/a0016172>

Diamantopoulos, A., & Siguaw, J. A. (2006). Formative vs. reflective indicators in measure development: Does the choice of indicators matter?. *British Journal of Management*, 13, 263-282. <https://doi.org/10.1111/j.1467-8551.2006.00500.x>

Fogarty, G. J., & Shaw, A. (2010). Safety climate and the theory of planned behavior: Towards the prediction of unsafe behavior. *Accident Analysis and Prevention*, 42(5), 1455-1459. <https://doi.org/10.1016/j.aap.2009.08.008>

Gibson, J. H., Schröder, I., & Wayne, N. L. (2014). A research university's rapid response to a fatal chemistry accident: Safety changes and outcomes. *Journal of Chemical Health & Safety*, 21(4), 18-26. <https://doi.org/10.1021/acs.chas.8b21406>

Goswami, H. M., Soni, S. T., Patel, S. M., & Patel, M. K. (2011). A study on knowledge, attitude and practice of laboratory safety measures among paramedical staff of laboratory services. *National Journal of Community Medicine*, 2(3), 470-473.

Grant, R. W. (2019). Incentives and praise compared: The ethics of motivation. *International Review of Economics*, 66(1), 17-28. <https://doi.org/10.1007/s12232-018-0293-z>

Gressgård, L. J. (2014). Knowledge management and safety compliance in a high-risk distributed organizational system. *Safety and Health at Work*, 5(2), 53–59. <https://doi.org/10.1016/j.shaw.2014.03.002>

Griffin, M. A., & Curcuruto, M. (2016). Safety climate in organisations. *Annual Review of Organizational Psychology and Organizational Behavior*, 3, 191-212. <https://doi.org/10.1146/annurev-orgpsych-041015-062414>

Griffin, M. A., & Neal, A. (2000). Perceptions of safety at work: a framework for linking safety climate to safety performance, knowledge, and motivation. *Journal of Occupational Health Psychology*, 5(3), 347. <https://doi.apa.org/doi/10.1037/1076-8998.5.3.347>

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). *A primer on partial least squares structural equation modeling (PLS-SEM)* (2nd ed.). Sage.

Heiny, J., Ajzen, I., Leonhäuser, I. U., & Schmidt, P. (2019). Intentions to enhance tourism in private households: Explanation and mediated effects of entrepreneurial experience. *Journal of Entrepreneurship and Innovation in Emerging Economies*, 5(2), 128-148. <https://doi.org/10.1177%2F2393957519858531>

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43(1), 115-135. <https://doi.org/10.1007/s11747-014-0403-8>

Ismail, Z. S., Arifin, K., & Aiyub, K. (2015). Promoting OSHA at higher institutions: Assessment of level of safety awareness among laboratory users. *Taylor's Business Review*, 5(2), 155-164.

Jafaralilou, H., Zareban, I., Hajaghazadeh, M., Matin, H., & Didarloo, A. (2019). The impact of theory-based educational intervention on improving helmet use behavior among workers of cement factory, Iran. *Journal of the Egyptian Public Health Association*, 94(1), 1-7. <https://doi.org/10.1186/s42506-018-0001-6>

Jeknavorian, A. A. (2016, November 2016). Preventing lab accidents. *Chemical and Engineering News*. <https://cen.acs.org/articles/94/i44/Preventing-lab-accidents.html>

Kidwell, B., & Jewell, R. D. (2003). An examination of perceived behavioral control: Internal and external influences on intention. *Psychology and Marketing*, 20(7), 625-642. <https://doi.org/10.1002/mar.10089>

Keiser, N. L., & Payne, S. C. (2018). Safety climate measurement: An empirical test of context-specific vs. general assessments. *Journal of Business and Psychology*, 33(4), 479–494. <https://doi.org/10.1007/s10869-017-9504-y>

Laurent, J., Chmiel, N., & Hansez, I. (2020). Personality and safety citizenship: The role of safety motivation and safety knowledge. *Helijon*, 6(1), 1-8. <https://doi.org/10.1016/j.heliyon.2020.e03201>

Liu, Q., Xu, N., Jiang, H., Wang, S., Wang, W., & Wang, J. (2020). Psychological driving mechanism of safety citizenship behaviors of construction workers: Application of the theory of planned behavior and norm activation model. *Journal of Construction Engineering and Management*, 146(4), 1-11. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001793](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001793)

Lixin, Z. (2018, December 26). Lab blast kills three students in Beijing University. *Chinadaily*. <http://www.chinadaily.com.cn/a/201812/26/WS5c233187a310d91214051076.html>

Marendaz, J-L., Friedrich, K., & Meyer, T. (2011). Safety management system and risk assessment in chemical laboratories. *CHIMIA International Journal for Chemistry*, 65, 734-737. <https://doi.org/10.2533/chimia.2011.734>

McEwen, L., Stuart, R., Sweet, E., & Izzo, R. (2018). Baseline survey of academic chemical safety information practices. *Journal of Chemical Health and Safety*, 25(3), 6-10. <https://doi.org/10.1021/acs.chas.8b25305>

Mirza, M. Z., Isha, A. S. N., Memon, M. A., Azeem, S., & Zahid, M. (2019). Psychosocial safety climate, safety compliance and safety participation: The mediating role of psychological distress. *Journal of Management and Organization*, 1-16. <https://doi.org/10.1017/jmo.2019.35>

Mostafa, N. S., & Momen, M. (2014). Occupational health and safety training: Knowledge, attitude and practice among technical education students. *Egyptian Journal of Occupational Medicine*, 38(2), 153-165. <https://dx.doi.org/10.21608/ejom.2014.795>

Neal, A., & Griffin, M. A. (2006). A study of the lagged relationships among safety climate, safety motivation, safety behavior, and accidents at the individual and group levels. *Journal of Applied Psychology*, 91(4), 946–53. <https://psycnet.apa.org/doi/10.1037/0021-9010.91.4.946>

Neal, A., Griffin, M. A., & Hart, P. M. (2000). The impact of organizational climate on safety climate and individual behavior. *Safety Science*, 34(1-3), 99-109. [https://doi.org/10.1016/S0925-7535\(00\)00008-4](https://doi.org/10.1016/S0925-7535(00)00008-4)

Pedersen, L. M., & Kines, P. (2011). Why do workers work safely? Development of safety motivation questionnaire scales. *Safety Science Monitor*, 10(1), 1-10.

Purohit, S. S. (2018). Implementing laboratory safety in the academic settings. *Pharmaceutica Analytica Acta*, 9(10), 195.

Ramayah, T., Cheah, J., Chuah, F., Ting, H., & Memon, M. A. (2018). *Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0*. Pearson Malaysia Sdn. Bhd.

Raosoft. (2004). *Sample size calculator*. Raosoft Inc. <http://www.raosoft.com/samplesize.html>

Rybniček, R., Bergner, S., & Gutschelhofer, A. (2019). How individual needs influence motivation effects: a neuroscientific study on McClelland's need theory. *Review of Managerial Science*, 13(2), 443-482. <https://doi.org/10.1007/s11846-017-0252-1>

Salazar-Escoboza, M. A., Laborin-Alvarez, J. F., Álvarez-Chávez, C. R., Noriega-Orozco, L., & Borbon-Morales, C. (2020). Safety climate perceived by users of academic laboratories in higher education institutes. *Safety Science*, 121, 93-99. <https://doi.org/10.1016/j.ssci.2019.09.003>

Salkind, N. J. (2018). *Exploring research* (9th ed.). England: Pearson Education Limited.

Sawhney, G., & Cigularov, K. P. (2019). Examining attitudes, norms, and control toward safety behaviors as mediators in the leadership-safety motivation relationship. *Journal of Business and Psychology*, 34(2), 237-256. <https://doi.org/10.1007/s10869-018-9538-9>

Schröder, I., Huang, D. Y. Q., Ellis, O., Gibson, J. H., & Wayne, N. L. (2016). Laboratory safety attitudes and practices: A comparison of academic, government, and industry researchers. *Journal of Chemical Health & Safety*, 23(1), 12-23. <https://doi.org/10.1021/acs.chas.8b23106>

Sieloff, A. C., Shendell, D. G., Marshall, E. G., & Ohman-Strickland, P. (2013). An examination of injuries and respiratory irritation symptoms among a sample of undergraduate chemistry students from a Public Northeastern University. *Journal of Chemical Health & Safety*, 20(5), 17-26. <https://doi.org/10.1021/acs.chas.8b20506>

Stackhouse, M., & Turner, N. (2019). How do organizational practices relate to perceived system safety effectiveness? Perceptions of safety climate and co-worker commitment to safety as workplace safety signals. *Journal of Safety Research*, 70, 59-69. <https://doi.org/10.1016/j.jsr.2019.04.002>

Staehle, I. O., Chung, T. S., Stopin, A., Vadehra, G. S., Hsieh, S. I., Gibson, J. H., & Garcia-Garibay, M. A. (2016). An approach to enhance the safety culture of an academic chemistry research laboratory by addressing behavioral factors. *Journal of Chemical Education*, 93(2), 217-222. <https://doi.org/10.1021/acs.jchemed.5b00299>

Staff, T. (2019, October 26). Technion professor dies after suffering serious injury in lab explosion. *The Times of Israel*. <https://www.timesofisrael.com/technion-professor-dies-after-suffering-serious-injury-in-lab-explosion/>

Steward, J. E., Wilson, V. L., & Wang, W. H. (2016). Evaluation of safety climate at a major public university. *Journal of Chemical Health & Safety*, 23(4), 4-12. <https://doi.org/10.1021/acs.chas.8b23405>

Su, T. S., & Hsu, I. Y. (2008). Perception towards chemical labeling for college students in Taiwan using Globally Harmonized System. *Safety Science*, 46(9), 1385-1392. <https://doi.org/10.1016/j.ssci.2007.09.002>

Taylor, W. D., & Snyder, L.A. (2017). The influence of risk perception on safety: A laboratory study. *Safety Science*, 95, 116-124. <https://doi.org/10.1016/j.ssci.2017.02.011>

Tsuji, Y., Tonokura, K., & Hayashi, R. (2016). Chemical substances management system at the University of Tokyo. *Journal of Environment and Safety*, 7(2), 129-131. <https://doi.org/10.11162/daikankyo.E15PROCP27>

Vogel, T. J., & Tomasko, D. L. (2015). An approach to strengthening compliance with ABET safety criteria. *Age*, 26, 1. <https://doi.org/10.18260/p.23512>

Wen Lim, H., Li, N., Fang, D., & Wu, C. (2018). Impact of safety climate on types of safety motivation and performance: Multigroup invariance analysis. *Journal of Management in Engineering*, 34(3), 1-14. [https://doi.org/10.1061/\(ASCE\)ME.1943-5479.0000595](https://doi.org/10.1061/(ASCE)ME.1943-5479.0000595)

Whithanage, N. D., & Priyadarshani, A. M. B. (2016). An assessment on laboratory safety knowledge among allied health sciences students at the University of Sri Jayewardenepura. *International Journal of Multidisciplinary Studies*, 3(2), 17-34.

Wu, T, C., & Lee, J. C. (2003). Developing a safety climate scale in laboratories in universities and colleges. *Journal of Occupational Safety and Health*, 11(1), 19-34.