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Learning analytics with machine learning for classification of student teachers'

research engagement: The use of k-means and naive Bayes
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1) MIIATRNRATIRTIIUNGUNMUITAUIIBNITTBUTVRUATOMT k-means WU31 I1WIUNGUT
wizauAe 3 nau waz 2 ngu lnensuusiSeudu 3 nau ansoesuieanuwlsusuvesdayaldgendi 2 ngu

Anudoray 59.6 uaz 40.7 AUAIRU 2) MIIATIINTIMUNNGULSBUMIEITNTTATIZI naive Bayes WUT1

NsAmuATIUNguLUY 3 nau luman1siuwuniussavinasuaiuuiugl (accuracy) WiriuSeuay 86.67
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Abstract

Learning analytics on behavioral data of students in online research course could provide insightful
information in classifying students’ research engagement. This study aimed to 1) cluster and discover the
suitable number of groups of students on research engagement 2) classify students on research engagement
and compare the performance of classification model between different number of groups, and 3) suggest
the potential proxies for the classification of students on research engagement. This study used log data as
proxies of research engagement. There were 253 participants involved in the research. The participants were
student teachers who were studying in educational research course at the time of data collection. The data
were analyzed with machine leaming using k-means and naive Bayes. The key research findings were as
follows:

1) The analysis by k-means revealed that the suitable number of groups in clustering students were
3 and 2 groups. The percentage of variance explained when clustering students into 3 groups was higher
than 2 groups, namely 59.6 and 40.7, respectively. 2) The analysis by naive Bayes showed that the model
yielded accuracy of 86.67% in classifying 3 groups of students, while classifying 2 groups of students yielded
accuracy of 84.21%, 3) The proxies having important roles in the classification of 3 and 2 groups of students
on research engagement were largely found to be similar. Most of them were related to leaming behaviors
derived from the interaction with content or activity on the learning system. However, the ranking of variable

importance was different.

Keywords: Learning Analytics, Research Engagement, K-means, Naive Bayes
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nsiaseiiansathusegndldldedraumnzanfe Bn1siinsgidionisiSouivesnaies (machine
leaming) MsUszgndlinsiFeudveaniesazdielvianmnsafumsuuuunmduius (hidden patterns) 919
dousefluieyatiflogosmainvansuaglidoyamsaumalndedn (insight) :mnmsianeildifisdy Jsaz
thingnmslilumanssuungGeumuanudasiugnilunsideiiussavsnaa
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ileviunevieduunnguuestoa Jsedeyndeyaiidosimuesiuusnadnivienguitmnedidesnisduun
urou uaznsBouiuuulifinisasu (unsupervised leaming) finthfidmiumsiaszviiiodnngudeyad
Lisnduseddyndeyansamesiuusidmnemndeu Insendensindeyaifdnuusmiloutunielndifsaiy
Lilunguifieatu (Karoly et al., 2018) agnslsinnu maduseudnsoinfanssulussuunsdnnisiseudesulal
fvanedadeiifaousnaliansassynudnuuvidonguiinudnvessiSeulinsounquiiSouynau dwaliifa
fosdnlunsliyndoyaiiinaszynduuesiiFouifieamesonisdsuiveneioniomssnundoya dedu
nsAnwafsiadunisussgndlindnmatouivonaieavuldfinsaeunasuuudnisaeusaniulunis
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#1638 kmeans Tun1siinsiehiilednnguuasmiiuaunduimnzaumiouiesyynguuosFouniudnume
Toyavasnsiufdunusiussuy uiun1sinseriaieds naive Bayes lunisaialunanisdnuunuazsey
fusunuimngaudmiunsiuunnguuesiseusuaudasiugmiulunisidedeld
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1. ilodnsgrinagminunguuesiiouinzansuamnudnsiunnilun femudnuuzdoya
nsiivfduiuslussuunisdanisiseuioaula

2. WieAsginisiuunngugisousuanudasiugninlunisideuazouifisuussansnavesns
FuunszriemsduungiFousesunguiuansaiu
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1. ulwimiiigafunisiinssinnsiFoud

N1TATIZIAN9EeUS (leaming analytics) munefis n153a n1siiusiusindeya nisleszideya
uazMssenuRateyaveSsuLar I uniiAnItes e Tnguszadlunshanudilasasudsaimunnis
BoufuavanmiadounenisSeuiidaaiunisiFousdu q (Ferguson, 2012) usnainilenandruieaty

AENYEILANTEINTIATITENsBBuINTlaLenzIgatula Wunsiesgififnwnszuiuns

—

SoufvosiSouluuvainisisoudesulad Tnewiunsliteyavesdiouiiftemieinannginssuves
H3oudisienisldausng 9 Tuszuu Teedmusduduysuny (proxy) Aldunuvieasvioufedunusmdn
figosmsfnuiiniduiudndmofnsviesuusludainine andeyavesiGeuiignufinlilussu (og
data) IneifunstiufindoyangAnssuvesdlidusiuniadrssuu (log in) aufamseanannszuy (log out)
e LERNE ﬁﬂuquﬂ%qﬁLﬁwzjixuu a"wmuﬂ%’5&171'ﬂ@@ﬁﬁaﬁ%mmmﬁammﬁaLﬁam $runuadaiiidngh

wuufiniin viseduauRanssuivinaseauysel dWusu (Kim et al, 2016)
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2. aluiirminearunnsBeuiveandes

N15AATILNA2ET k-means

MRS kmeans \usaneiiunisdangudona (clustering) tneidunilslumaiianieisnis
Ansziiildinouaglidudounn 1Hlunsnoulgmideiidesnisianduuesteyailinsudnvuzvie
AuANYAETBINALINABY AUNSAMUAT WIUNguTFBsN1sTuRdeYa (k clusters) M53LAT1ZWIT k-means
findnnadesiuite mafumenanaiudureanguusiasnay (k centroids) Tneduannstmungedeyadidu
AN NSEY waziiansanyadayaluyadayamenisldndnnisvessserseningatoyalarANa19YeINgY
Tnedatoyanis 4 lunduieatuanasiioglndiian antdunssuiunsdumeanansanintudnads Tnem
Ananswesngulvsinngateyaiiluandndddiandanguainnssuiunsneunii msdaiiomanasuas
nsdateyadngulmianiatugn 4 aundiaglifimavdsuuiasmesaindnlungusiufednarsresngu
(Ayodele, 2010; Tarca et al., 2007)

A153AT1Z9R83T naive Bayes

NTILATIZIID naive Bayes Lﬁuﬁﬁﬂ@%ﬁmﬁLL‘Lm‘USSLﬂ%%@gﬁﬁﬁﬂ%ﬁﬂﬂmuﬂmsL‘TJUEJEJ"]N'WEJ el
wENMsAATEATIBMguilud (Bayes' Theorem) lavendendnnisanuasfufiduinanamiuazsasiy
sewinenlugadeyaiileszylonaniseglundusing 4 (Saritas & Yasar, 2019) M53AT1EsiFILIMATA naive
Bayes lunissuundeyaduiiyaidunaisusenis Ao nszuaunisdniunisiilddne lddndudesnide
nsUssnaAmninesidudou wedaiifusnuilunafafianuisadnmstudeyasuniu (noise) 167 o
namldidaraldesienunlsunuvesdeyasunuiifleglutoyainudn Snmtaseinnsiuiudsnudnume
Alsidmanvdeliifetedld wavendodeyalugsiinduiissdruudesiiiel flunisussanaaimsimes
fdfydmunsiuunussinnuestenald (Ray, 2019)

nsiFeuiveuniesdisznevliieitmsiinssifivarnuans safsnsuszgndlinnsiiase
saadasiudu 1wy mslimsienesifiodnndudeyausyseynguliiuiedifide uasthmsimunnguils
Tlddmsunmssuundoya efnunfuusaudnvazilflumssuunnduvioraunlunaieviunenguves
fetluyatoyalvl (Barrientos & Sainz, 2012)

3. aluiimiiearuanudadiugniuluniside

auiBasiugniiuluniside dngnnanidudnuazvenisinginssuvionisidiusmiierivianssm
y19m33%e nsussduanuadugnitusudnuae nsnueesld fud nadudeiumiate meadudldn
30 uaznsidugsinandds (Del Mar & Askew, 2008) wiomsfiansanaudasiugnifuansefunsTdms
TuAenssunside wu msswndss msthawddelulivselond asdiulsimeuavesmsinanudasiugnity
1umﬁé’fsnfummm’iﬂmﬂmiﬁdauémﬁaazﬁquaﬂiiﬂuﬁaﬂimﬁmﬁ”‘umﬁ ”EJﬁLLmﬂﬁmﬁuiﬁsﬁuagjﬁ’w%w
fifnw Fadu msdnwedstagiaamudaifugniulumsideanwginssufigGouilussuumsdanisdous

saulateanuuulifiseussuiuagintanssuieaiun1sidensdinm

ASBULUIAANTSIY

myfeesslidunsiinszinisieuivesisoindnagiunnuBaduyniulunide Jadumsfinw

Teyavedispunnsiufduiusivianssunisseulussuunisdanisiseusesulail (learning analytics)

(Macfadyen, 2017) visililesananudasiugniulumidedunndnuasiuguddyiiasiangnmsiamnaiug
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inwelumsideuaznisuszaumudnsalumsdewioly (Lester, 2013) Mmadnzinisiieuiluasilldmaseu

19A384 (machine learning) LHWASMslumsinseideyavesSeuiildanmsiufinvesssuumsianmsbeus
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o =

nauvef3euiiifisamesion1siSeuiveaaioaienssuundeya nsAnwiasiiiadumsldvannsseudves
1P309838 k-means Tumsilnneiitedanguuarseynguliiug Foundazau samfunsiinsgisngds naive
Bayes TunsafdlumanmsduunuazsydudsunuivnzandmiumssuunnguvesiiFousuanudasiu
ynflumside damsudenguiiFeuiiunndsiudssasensiisyavinavesmssuundiFeuiiuandraiuse

ANUTOLEAINTBUMLIARNNFI AR TN 1

nsdangudeyasig k-means
1. Amualvdwiunguee 2 k = 2)

2. mvuabiiuunguAe 3 (k = 3)

lueansTuungiseusiginailanisiseus

o . NANNTILUNNANVDINLS U
VBIAIDY naive Bayes k v

USeANBNaNITIILUN

AN 1 NTBUBLIAANITITY
A5aiun15998

Uszunsuazneenelag

o =

Uszans fe Tandndnuiluszdugaudny augasmansuasfnuimans

feg1ide Ao TAninAnwiAg seduUTyyns AnzAsMmaniLasAnwiAans firmdusousein
Rerfumidemansiinu Tunansinwivans Iniseinu 2563 $1uau 253 au ldunannsidendiodng
wuufaufing (snowball sampling) 1313 nn15idenisg1tuuuianzasainddninAnwfiddaieusieden
Aenfumsidenanisine luumine dess 9 wee19158Used3v TunsuugihgFeulunauSsuseiiu
vialfleusiuseivisoly
\3asiledde

n9idendiillfiedosilelunafununudoyadeszuunisinmadsuoouladdiaunTuuuiuled
uaggIudeyaszUu Moodle Usgnoufemissfanssuluideiiisitesiunisise dnvazianssudiilvy
zegfluguuuudumesuendin (interactive content) Afi3euanansasiufausiusldneuiuszuuls saulud
Ansauluguuuiliidouldasadonviesmeuliluianssy wu maudsiuenidds matufinvieata
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1. Anseiiiedanguiissuauaudaiuyniusen19I9e d1en1si3euivetaIadis k-means

Y Y

PntuaiagadeyaninaiuiiUsnadns dude fmuUsngy wazssuavsengulviisouusazauluyadoya

=

2. nngiitednunnguuedisounuaudaduynifusensidenien1siseuivensadls naive
Bayes lngldyntoyaniin1sseunquuesdiiouna uaginsziiomdudsunundunumdAglunisdiuun

nauRSsumMUANUEATurNTUiaN1TIdY

NaN15I38

aouil 1 fauvswmilunisinesianudadiugniuluniside

Faudsunu (proxy) Aldlumstinsesiadsiifisiuau 40 duds Ineldindetoyavesiulsunuainnis
dmnemsvesteyanisiufduiusvesfldiuszuunisiansiSeusiignduiinluszuu Moodle (log data)
Feusznaudenginssuiitinainniansevinivesifeatos 1wy fauassuu agaou waeidou msideadd
é’w’mLﬁaﬂLawwwqﬁﬂﬁmaa;ﬁﬁauﬁLﬁmsﬁumﬂmiﬂﬁﬁ’aﬁamaﬁﬂﬁé’uﬁuﬁ‘mmpjﬁsmﬁ’mswwhii’u vinliilown

FawgAnssurianun 40 518013 laen1s3veaislinuanginssuianaradusuusunuvesrudadugni
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Awnzaunall 5198108A89518N1AIUTWNUNNUALERILARININ 2

fauUsunu ALY fianUsunu AUNUNE
BDG.LIST.VIEW miﬂmLﬁgﬁwmi‘uaw%agyiw‘?a INT.CON.QIZ.COMPLTE mwauﬁwmﬂuﬁaniiuﬁuma%uaﬂﬁﬂﬁw\lszﬁ
COM.CREATE miﬂauLmuéﬁaéﬁuiuﬁﬁmiwﬂﬁwaﬁuﬁwau INT.CONATTMP.SUBMIT | msnaasmeulufanssunuudumesuondin
CACT.COMPLETE nsvhAanssulusnagiiveaysal POST.CREATE nsasslnanslunszyaunn
C.MODU.VIEW minmLSJWwﬁaaﬁamau’luuéasﬁa% POST.DELETE msaulnanglunseyaunn
C.SEARCH nsaumunZeulumvdnueaiulen POST.UPDATE nsunlalnanislunseyaunin
C.USERRP.VIEW nsnagserunsyhianssluunisey QIZATTMP RVIEW MIgNImeUARINANTINAUILYALUUVIAGDU
CVIEW minﬂvuywMumﬁ”ﬂmawﬁwﬁﬂﬂﬁuaaﬂaﬁ QIZATTMP.START miﬂmLﬁaSmauﬁﬂmﬂuﬂgmmwmaau
DISS.CREATE m3a§wﬁww§anmﬂ’luﬂsxmuauwm QIZATTMP.SUBMIT minmﬁaﬁqﬁwaﬂumu:uuwﬂaau
DISS.DELETE miauﬁ’ﬁaﬁaﬂixﬂluﬂizmuaumm QIZ ATTMP.SUM.VIEW mim?ﬂ@@l‘;ﬂmiﬁwﬁaﬂsiﬂuﬁ;mmwmaau
DISS.SUB.CREATE msnadnaufanssulunseyaunun QIZATTMP.VIEW ﬂ'1m)"wQmsmauﬁmmmamulm;mmwmaau
DISS.SUB.DELETE mismLaﬂminmﬁ@muﬁamsﬂuﬂizﬂauwm REC.CREATE msasstnaluinssuiluusdufnou
DISS.VIEW minmﬂzijamzﬁauwm REC.DELETE msaulnalufanssuilnuusdumney
ENTRY.CREATE miaiywiwa’luﬁﬂﬂiiuﬁiﬁuﬂﬂu%ﬂga REC.UPDATE msunlalwaluianssufilnuuatusmney
ENTRY.UPDATE nsuntalwalufonssuifliuusiureya RESPND.SUBMIT n9lsuTem AR IEUNITEUTIDS
ENTRY.VIEW mirmLGJW@Iwa‘luﬁanisuﬁ‘lﬁmaﬁuﬁa;&a SOME.CONT.POST msasetwalaesalunssmuaunn
GRD.OVERV.RP.VIEW ﬂ’l‘jﬂﬁ]L%T@iﬂaﬂ?uﬂsLLquuﬂﬂWi’m‘UENi%UU SUBSCRIP.CREATE nsnaRaaufanssulunsEAuauNUN
GRD.USERRP.VIEW miﬂmL%ﬂ@immuml,l,uummpﬁ% TAG.ADD.ITEM ﬂmﬁuﬁﬁwmwaﬂ"luﬁaﬂsimuﬂqﬁmaga
INT.CON.PRE.COMPLTE miv‘hﬁanimLmuﬁuma%uaﬂﬁmugizﬁ USER LIST.VIEW ﬂﬁLﬂTﬂQiWEJ%BEJL%EJHIUUVIL%EJU
INT.CON.PRE.PROGR msdunsrhianssusuuuaeswendi USER PFILEVIEW mim@lﬂﬂwémwgﬁau
INT.CON.QUES.ANS msmeumaaluianssuuuudunesueniin USERRP.VIEW mMagenuawTIIveseuluuniSy

20 2 NSl 40 ennslunsleseianudaduyniuluniside
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gy '

\Wesnndudsunuiidnunann dalu Mmyideasilaziiauedeyaiugiuvewiuulsununianuuie

o

viefnuldunnilgaindidunsnlugedeya lnaidefinnsanAaditugiuvesiuusuuesiiegididesiuau
253 Au wuFLUswuigifeudinsufiangAnssuluseduainiian dslufiddninenisinduenuiuie
$1uaunds I6un INT.CON.QUES ANS v mansusnlufianssuuuudumesuoniiv faiadewintu 124.49 ads
(SD=61.07) INT.CON.PRE.PROGR %38 maidrduilunisvhianssuuuudunesuoniivl anadewhiu 90.29 ass
(SD=61.14) C.MODU.VIEW vide n1snaudnguiasfanssuluusiaziate anadewinty 66.91 ada (50=33.82)
INT.CON.QIZ.COMPLTE vio mansufanilufanssuuuudumesuenfimaieauysal duadewindu 42.16 ads
(SD=19.18) C.VIEW sifensnaiiutiwdnuesszuufanssueeulay aadewiitu 36.6 ads (5D=22.05)

Aoull 2 nannsiangufisoudtuanudatiugniulunsidedaeis k-means

wan13dsRswaunguiiszaslutudy

mMeeneiiedsasuaunduilivangay (optimal number of clusters) Tuiosiunaziiiodang

o

ayavednnguuesdiFeumensieuiueuaiadis kmeans wuit Srnunguilviinzaude 3 nqu eglsiny

Qe

UNgUlInzgaNa1duiende 2 ngu A mdeassllagldnisuiaingugiSeuns 2 sUuuu laensuus

a

Aiseuseniu 2 ngu wuidaanuudsusiunelungulaesiu (total within-cluster sum of squares) Wiy
1483468 waznauUanguassiiannsnesuemsulsUnuesioyafnluiosas 407 aursodanduieuldde
naufl 1 Uszneusei3oudiuam 128 au wagnguil 2 1w 127 au luvagiinisudsngugGousondu 3 ngu
wudlAANuLUsUTIuelungalae sty 1010513 uagnisuunguanunsaesunganuulsuTIuesdeya
Andusesas 59.6 FsanunsadanausiSeulsiFe nauil 1 $1uou 161 Au NguT 2 ST 52 AU waEnANT 3 T
42 au namldinnsdadeyasendu 3 nguvilidaAnnuwandrenelungudosnd uazauisaeduieniny

wUsusuvesteyaldfninnmsdadeyailu 2 nqu

[ £

Wiaszydnuuzreitsukdaznguisiananauanuvaeteyanislunay Insldanaiodiulsves

]

wiagngy (cluster means) WuiausaseyaudnysveangulinussAungfnssunsiujduiusiussuy

| "oa oA

TnansudsdiSewdu 2 nquidu nanldindSeunguil 1 Wunquitfianuanudaduyniulunsidelusziuas

U q q

'
oA [

vuzfif i Sounquil 2 \Junquitiauanudadurniulunsidelusedud dmsunisudadiFewdu 3 nqu
anansaseyladn leunguil 2 Wunguidenuanuadusniulunsidelusedvas nquin 1 Junguiifianu

q Y bl q

|
o 1Y 1Y

Saduyniulunisideluszivuiunans uaznguil 3 WWunquitfinnuanudadiugniulunsidelussdusi

P o v v 2 W @ Aav ¥y ao ..
ADUN 3 Namiml,mnnquwLﬁﬂumum'maﬂuugﬂwulumi'aﬁ]EJmEns naive Bayes

Y

Y ¢

N153LAT1ENNITTMUNNGUELTBUAI8TTNITIATIEN naive Bayes AI8NIIATMUATIVIUNGULUY

RNV}

1%

2 nqu (k=2) nuluaan1sdnuundusednsualunisduungisounennuusugn (accuracy) Wiriuiesas
84.21 dwmTumsuungiseusignsivuaduunguiuy 3 ngu (k=3) nudrlueanmsiuuniiuseansneg
TumsduunfiFoussanuudugviiiuiosas 86.67 ueniniiofinnsaussansuavaslumasiun
fumnusug (specificity) FadunuusugrlunssuungiGoudlaldnguidmuevdniideanisaasy
wuilunmsufidigeniinissunuuy 2 ngy udidlefiansunusyansnavesluinadiuundiuainals
(sensitivity) Wuinn1ssuunnguuuy 2 ngusidinuliganda dsanunsadwunnguidmanevandisesnis
nadeu (true positive) ligndowunnndt sgndlsimumniinnsanarmudugiiunmsduuniaeningia na1alain
TuwamssuundidoumenisianduitsanssunuuiivsydvinaiigauarndiAsstu udmnfinnsananuaninse

=~ a a a oA

Tumsdwunngueeslagnies nudn S1utunguwuy 2 nuiiusedninainii Weswnduundisoulaati
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gndastndidssiuluits 2 nau aenndastunansduuniinut Tueaanansaduundidoulungu 1 légndes
Sovaz 47.37 uazduungiSeungu 2 ligndesiesar 36.84 luvagiinisfmunsuaunguuuy 3 ngu wui
frnuannsalunssuunngugesiosunanguldegausiudiganiingudu aeandestunanissuuniinuin
TuwmaanunsadwundiSeulungy 1 lagndesseuay 56 uianunsaduundiSeundy 2 uae 3 ldgndeuiiessosay

17.33 way 13.33 @ua1iu 518a88unnIn1s199 1

M19199 1 Usgdvsnanisiuunnguiiseulay naive Bayes wuu k=2 way k=3

UszAnduants | mssuungBeudaenisimuasuaunguiiuansneiu
N 2 ngu (k=2) 3 ngu (k=3)
Actual Actual
1 2 1 2 3
Confusion
1 56% 8% 2.67%
matrix 1 47.37% 14.47% c
5 2 2 | 267% | 1733% |0
£ k]
S ke
] 9] o
o 2 1.32% 36.84% & 3 0 0 13.33%
a
Accuracy .8421 .8667
Class 1 Class 2 Class 3
Sensitivity 9730
.9545 .6842 .8333
Class 1 Class 2 Class 3
Specificity 7179
7419 9643 1.0000

FusiifianuddglunissuungFeu

mfeadalhmstiesghitedmaiulamuiingasdmionssuungBoudunnuBad
HNAUNNTIY dumslinseianud1Atyesianys (varable importance evaluation) IngAndansianusun
10 EruusnandawUsunuiavae 40 fauus AAUNITNAITUINAIAZLUUANLE ARV IFILUT (importance
score) MllunssuungiZouusaznguoonainiu wan1TIATIEANUT MIUUINGULUY 2 Wag 3 nax FauUs
filmudddnlvadunemsimiioudu egrdlsAmudduanuddguosiuuslunssuungGouunnsnediy

LﬁaﬂmsmﬁqLmiﬁﬁm’mﬁwﬁaﬂun’mﬁ’muﬂﬁfﬁ'amﬁu 2 ngumuin Fauusidanudifyddudu
Srudufudsiifstestunginssunaidouifeinnsanannsiufduiussvaueaionmiedansau
Tuszuu Tneduwds 4 arduusniludiudsvesfanssusuudumesuoadivl 1iun n1smeudiaulufanssy
nsneugeAnNlufanIIegIATUANY T N1508 58NN TuNMIYINAINTIY WaznN15YIYARINTINBENATY
auysel lufenismsnadsdmeulufsnssuuuudumesueaiiv uaznmmihianssuguiuuiiinsanazuuy
muadiu dmiuiulsddgnausiesnuindusnensesiulsiiedesiumsnadigmisefanssiluusdas
Wde Manadmihrdanvemiiefanssueeulal wavnadign1sneuinuvesmueslugakuuMngdey tnedl

o w o

fuusmeifnssuluurazimidoasaanysaliduiudsifanuddoyadunau

dlefinsansuUsifinnuddglunmsduungiSewdu 3 nqunuii dnuazvesiudsiadeiuliliey

2 o w &9 v v ' ° v <, ' ' < Y Sa o w1 to &
Judwunlndidesegrsdnaugunsduungiseudu 2 ngu egrslsimududsndanuddnydulngdadu
fuUsinerteatungfnssunisiseus leaidududsnldannsivfduiusivauveailonmieianssy

o

Tuszuu MadllunisduundiSeuidu 3 nquilnud Sruruasswesnisnadiguilsfanssuluudaziide
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P o

fanudidgaddunisdnuungiSeuduieiiunisvinanssuluseuu Melldunsnadinivanveaily

a

AanssuesulatsindsdunsvhAanssuluwiazidewdseanysal ldladudsdrdyavudunldvavenaay
gadlugniiuvediioy Feaennnesiun1siasiziiu 2 ngu uenantinuiinsaielnalufanssuinliwiadu
Ameovansaswldlunisduungisou 3 nauld sreaziBeadiduainudidguesiiiusununagAeiuie

AIUTENULERILUAITIT 2 way 3

M19199 2 TensiudsununiianudAglunisduungiSeu 10 dduusn

nssung3usenisitmunsiusunguiiuandiaiy
2 nqu (k=2) 3 ngu (k=3)

Importance X1 X2 X3
INT.CON.QUES.ANS 100 INT.CON.PRE.PROGR 93.4 100 100
INT.CON.QIZ.COMPLTE 97.14 USER.GRADED 96.47 100 100
INT.CON.PRE.PROGR 92.15 C.MODU.VIEW 96.98 99.9 99.9
INT.CON.PRE.COMPLTE 87.04 INT.CON.ATTMP.SUBMIT 95.38 99.8 99.8
USER.GRADED 86.42 INT.CON.QUES.ANS 99.2 99.7 99.7
INT.CON.ATTMP.SUBMIT 81.75 INT.CON.QIZ.COMPLTE 97.72 99.29  99.29
C.MODU.VIEW 76.17 INT.CON.PRE.COMPLTE 87.52 98.99  98.99
CVIEW 74.79 CVIEW 79.34 94.95 94.95
QIZATTMP.VIEW 64.7 C.ACT.COMPLETE 79.89 9222 9222
C.ACT.COMPLETE 62.67 REC.CREATE 83.56 88.69  88.69

M1999 3 AESUIBAVIIVINEYRITIENSRILUTINUTT A U@ A U TN S By

fiauusunu AU

CMODU.VIEW nsnadigviiefanssdluisasinde

CVIEW sneivdnvesiieianssueaulay

CACT.COMPLETE nsvinAanssdluwsasieraaiysal

INT.CON.PRE.COMPLTE nsviAsnssILuUBUReSuerTivkas ey sal

INT.CON.PRE.PROGR mssgsemwiunsinfanssuuuudusesLeaiin

INT.CON.QUES.ANS nsmpuAaUUAINTIULUUD WABI LOATIY

INT.CON.QIZ.COMPLTE msmeudalufanssuuuduesweativiaiaauysal

INT.CONATTMP.SUBMIT nsnedsimeuluAINTSILUUB LRBS LeATin

QIZATTMP.VIEW nsnadngMIReUADseweduYALUUTARRY

REC.CREATE msadanaluianssuiliud dufneu

USER GRADED miﬁﬂﬁaﬂsimgmwuﬁﬁmiﬁmﬂwuu
2AUTIINANITIVY

maﬂwﬁﬁaamﬁaﬁﬂfgjﬂﬁaﬁﬂiweﬂumzLﬁuﬁwialﬂﬁ

1) nansTunnguseusuANEatuyniulunTIeae3s naive Bayes Ingldnisssynguiiseu

LY

PNUANITIANGUAIY k-means NUT1 TAANITTIUNAINTATIUNNGUNTIULUY 2 ndunag 3 nqulasgnd

v a

gndpawiuglusydugddndifissiu Tnensduungissuesnidu 3 nguanunsavilaudugindignii Mdens

'
1 a

WewNINNssEYNaUTIE T susnzaudsinaIen1513euiUeuAIaeds k-means A1XNSOMIEAUMIFURUUYTD

a
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anwnvestoyanliduneudgeusdluyndeyaniioy (hidden pattern) Ingdnnaudoyanien1siiansan

kY

SrEEMNeTENINNgAvedeyanLe Weliannsalaasaumarasnguinnyign (Zheng et al., 2014) donndos

¥y
U SAaa °

fun1sdnngudeyaluassiniimsimuadmnunguviiiu 3 awnsaldasaundlafnitnisimuediuiungs
u 2 ndu fetfy Wetmadandnuldlunisssynduuesidouiioainslinalunssuunnduisililuaa
sz Aninagemulufe dmiunanmsinsginsduungBoudinui lunanssuungiSounuy 3 ngu
fusgAnSuarmuauly (sensitivity) Woundn uiliaudinig (specificity) 11NNNNITUUNKUY 2 NGY Wt
p1amsmanalulssifuresauaunavesdoya (Banerjee et al, 2018) Tnsnsidenssd nsduunuuy
2 ngufidnnuvesiedidelunsaznguludndiuilngdifssiuann (balanced data) luvagfinssuunuuy
3 ngu nuhdnuieiiduluusaznduiidadiuiiliaugaiu (imbalanced data) Tngfinguitivsnevandi
Foan1snagay (true positive) 1afid1urutiosniingudu 9 Ivililumadiuuniianallunsszynas
fananletfesniy wafluunliufiamnsaszynguitlilinguidmanglunismaasy (true negative) ligniios
wnndtiues

2) Nam'ﬁmeﬁéhLLﬂsﬁﬁmmﬁﬁiﬂumﬁwLLuﬂ;:JL%wé’humm%ﬁuaﬂﬁﬂumﬁé’f& WU daulvig
Dunguiusiiieadostunginssunisifeusannisiujduiussvdruvenionmiofansaulussuy
uaﬂmﬂﬁé’qwuﬁ’sufdiﬁLﬁ'm%’mﬁum‘aﬁ’h@wﬁwé’ﬂ%wmaﬁamiiuLLazﬁasﬁ'aﬂawaaﬁﬂmim warduIU
Aanssuiiviiasa Fanamldiundniidnvurasandosiuianssuiifnlilunisganudasiuynilunisou

Yo sulaifiguiunsiseulutuieu Wy numsiditusey 31uiunuivinds (Appleton et al., 2006)

L4 '

NWANITIATIEN nanledn msdungSeundnnulalunsujoRuuunadu Fadnfiansuainnginssy

ANudvasNstuEeY Msigurihefanssuluidagiite sauianduuianssuivihasuty ldidflganese

nsdkunnguresissunuaNBaiugnity Snvislaleduusnddygalunisseyindiseudanugnitu

Y
lun1sieu MdarsinsiansanswwduiudsivansdiangAnssunisiseuivesiis vunilideillent fanssy

Y 2 1w

NMFMULUUNAZRU FIUTFeUTENOUNTSSEUTULUUATY 9 Feanwanisliasienassldliiuindulsanuuy

= v =

mnandusudsngunaniifiunumddglunissuldfasaiesungisousuanuBaduyniulun1side

'
o A

HaNTIATIEINTSeusiieduungisouil villaasaunanddyivieligaeuinsourtouuims
lunsuszifiudiseunertuanudaduyniuluniside weliaiunsanseduvseduaiunginssunisiseus

Y
'

figizeulianmudatugniilunsidelussiuiigadiudely Ssaonadosiuaniidoves 33y 259minid
(2561) ﬁ?ﬁﬁl,ﬁu'jwisé’uwqamimmiﬂﬁﬁaiwﬁﬁxﬁummmmimawjﬁauﬁgﬁu \An9InMsfienansdiinng
UszifunagAamugounasmnmsdaiduuasiannfisouingausiulymegnansige

3) f?hLLﬂiLLmuﬁﬁmmﬁwﬁ’@Ium'ﬁﬁ?’]LLuﬂQ’ﬁau Tunnsaunaléin sensdwlsunufidfey
dauimy'L“ﬂuﬁﬂwmmaawqaﬂﬁumiﬁﬂuﬁﬁlﬁmﬂﬁaﬂiimﬁmmmﬁﬂﬁaﬂwimL%U HALUUULAZIRALANINAANS
Mendnsmeu heenisvhemunmnu waranasoudldfenues vasiifulsmuiidungfnssiainms
yhianssulusiuunswandsueudssriiilunssauaunundu SslidunuinddylumsduundiGou
luadsil Madloradesanhinmsesnuuunselussuunsdaninioudeeulatasdl WuunFeudiomstindu
numuiidy §i3sufunummdnlunisdnduianssudng q Iiegnsdass Tnefidaoulaliidunnsedunie

Yy v 1Y

v inlidiSeuenaviausegelanazusanseiulunisidausinluvisianssy Wumglisedungfnssy

U U

lusrgnsfndsunumaniduaziinng o fuseninediseu eldaunsaldduunnguiisoulaftuies

VY

donndnaiunudTeves gunn gseved wazutaiun Fnadnd (2561) fuandliiiuin nsduasulidiseu

Y
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