

The Influence of Team Fault Zone on Team Effectiveness : The Moderating Effect of Paradoxical

Haixi Wang and Zhijian Xu

Chinese Graduate School, Panyapiwat Institute of Management, Thailand
Corresponding Author, E -mail :396534651@qq .com

Abstracts

The research on the relationship between team fault zone, interactive memory system and team efficiency. In order to gain advantages in the increasingly fierce market competition, it has gradually become one of the main work forms adopted by the enterprise to complete the work tasks. This paper is based on information processing theory, social cognitive theory, social exchange theory, A research model describing the relationship between team fault zone, interactive memory system, paradoxical leadership behavior and team efficiency was constructed, After the basic conceptual model and proposing the research hypothesis, Finally, 502 questionnaires from 107 project teams, valid questionnaire data, Through the empirical research methods, it is found that: (1) the social classification fault zone has a significant negative impact on both the interactive memory system and the team efficiency; (2) The information cognitive fault zone has a significant positive impact on both the interactive memory system and the team efficiency; (3) The interactive memory system plays a significant intermediary role in the relationship between the two types of fault zones and team performance; (4) Paradoxical leadership behavior has a significant and positive impact on the relationship between social classification fault zone, information cognition fault zone and team efficiency.

Keywords: The Influence of Team Fault Zone; Team Effectiveness; The Moderating Effect

Objectives research

This paper aims to enrich the team crossover theory and provide practical guidance to enhance the advantages of the enterprise team, and realize the scientific and effective management of the diversity team implementation and give full play to the overall effectiveness of the team. There are mainly the following three purposes: First, introduce the interactive memory system as the mediation variable, and establish a regulatory model to test the mediation effect of the interactive memory system in the regulatory effect. Second, based on the division idea of team fault zone and social classification theory, this paper studies the relationship between the research team fault zone and team efficiency from the social classification fault zone and information cognitive fault zone in depth. Third, explore the regulating role of paradoxical leadership behavior on the relationship between team fault zone and team efficiency.

* Received: September 14, 2022; Revised: October 12, 2022; Accepted: October 17, 2022

Literature Review

Study on the team fracture band. Team fault zone with similar attract paradigm, social identity theory, self classification theory based on team diversity theory, innovation based on the team diversity perspective, analyze the dispersion of the members of the team output research, with a new perspective in members multiple the same or similar attribute characteristics of the configuration of dynamic aggregation, to the team and even the whole organization operation process and output. The team fault zone proposed by Lau and Murnighan (1998 : 325-340) mainly reflects the team division phenomenon caused by the dynamic aggregation of multiple similar and objective attributes of the members. The connotation of the team fault zone mainly reflects the imaginary dividing line formed within the team by the combination of demographic characteristics such as gender, age and race. Subsequently, Starke (1999 : 792-822) found through in-depth interviews that the factors that constitute the team fracture zone can not only include the demographic differences of team members, but also the deep cognitive characteristics of team members can cause the team zone. Bezrukova (2009 : 35-50) Classified the team fault zones according to the difference of the member attributes that constitute the team fault zone and the related team diversity studies, and divided the team fault zones into Social Categorization Faultlines and Information Recognition Faultlines according to the degree of association between the member attribute characteristics and the team tasks. On the whole, with the development and deepening of the research on the team fracture zone, scholars gradually focus on the team fracture zone generated by the surface characteristics of the members to the connotation of the team fracture zone generated by the deep differences in the member attributes.

Research on team effectiveness. The definition of team effectiveness by domestic and foreign scholars is to compare the actual output of the team with the expected output, that is, the degree to which the actual output reaches the expected results. McGrath (1964 : 102-103) first proposed the concept of "Team Outcomes" or "Effectiveness Outcomes" in a broad sense, which is widely applied by subsequent researchers, and refers to the output of those team activities that team members considered valuable, usually including the performance in terms of team quality and quantity, as well as the emotional response of members. Hackman (1987 : 42) believes that the concept of team effectiveness should be defined by how well the team performs the tasks it assigns to the organization; Tjosvold et al. (2005 : 341-367) From another perspective, team efficiency is defined as how much a team can serve its customers. There are three main methods generally accepted by foreign scholars to measure team efficiency: First, the system resource method refers to the ability of the team to develop its environment and obtain valuable resources. Second, internal process method and goal method Team efficiency refers to the characteristics of the team itself. Third, the target method, the proposed measure mainly refers to the achievement of the target.

Although the scholars of interactive memory system dimension division is different, but they are the division of labor, sharing and practical three logic, think the formation of the TMS is inseparable from the consistency and the division of labor, the second is without the team members to communicate and share information, three is to use in the practice of TMS to improve group efficiency.

Paradoxical leadership behavior (PLB) is an emerging leadership behavior only recently proposed by scholars, and at present, the academic research on its influencing factors and mechanism of action is in its infancy. Luo Jinlian, Hu Wenan and Zhong Jing (2017 : 122-134) based on social learning theory, prosocial motivation theory and team process theory, Taking the age, gender, educational experience and team size of the team members as the control

variables, The research shows that PLB promotes team innovation; team vitality plays a complete role between PLB and team innovation; Team cognitive flexibility plays a role in regulating the relationship between PLB and team innovation; Team tasks, interdependence regulate a positive relationship between PLB — team vitality and PLB — team innovation, The interaction between PLB and team tasks and interdependence completely affects team innovation entirely through team vitality.

Research Technique

1. Literature research method

This study has consulted a large number of domestic and foreign literature, sorting out and analysis, in order to define the problems to be solved, according to the relevant literature ideas, focusing on consolidating the existing theories in the existing literature research, sorting out the relevant views, and give hypothetical reasoning.

2. Questionnaire survey method

According to the relevant literature and the research hypothesis model of reasonable derived innovation strategy, the mature questionnaire verified by relevant scholars and the situation of this research, a set of questionnaire was designed to ensure the rationality of it, distributed and recovered within a certain period of time, and analyze the data results.

3. Empirical analysis method

This research will distribute the enterprise innovation questionnaire, and the relevant data collected by the questionnaire survey will be analyzed by applying statistical software. The main correlation analysis will be conducted to infer the relationship between variables, reliability and validity analysis to measure the accuracy and stability degree, regression analysis to test whether the hypothesis is true, and so on. Thus, we get the research results and management implications of this paper.

Hypothesis construction of the impact of team break zones on team effectiveness

1. Relationship between social classification fault zone and team effectiveness

Because the individual way of thinking will be affected by the place of social development stage and cultural background, so belong to the different ages of the team members its perspective and deal with the problem there will be differences, which lead to the team, the more obvious the age attribute difference team is divided into several children, the greater the possibility of the team. When the social classification fault zone in the team is more obvious, the sub-team of the sub-team of the members will be stronger, and the goodwill and recognition of the members of the sub-team will be much higher than that of other sub-team members, and even reject the members outside the sub-team. As a result, team members will tend to communicate with members of the same subteam, and reduce the interaction with other subteam members (Cronin et al., 2011 : 831 - 849.), as the reduced frequency of effective interactions between different sub-teams adversely affects team cohesion and team effectiveness.

On the whole, the team is established to complete specific tasks or achieve specific goals, but the social classification fault zone makes the whole team divided into multiple differentiated sub-teams, which is not conducive to the smooth implementation of the team work. Accordingly, the following assumptions are made:

H1: The social classification fracture zone negatively affects the team efficiency

2. The relationship between the information-cognitive fault zone and the team effectiveness

From the perspective of the relationship between information cognitive fracture zone and team efficiency, there are mainly two main views, that is, some studies believe that information cognitive fracture zone has a negative impact on team efficiency, but in recent years, many scholars have pointed out that information cognitive fracture zone can improve team efficiency. Among them, the information cognitive fracture with negative impact team efficiency view of scholars believe that in the construction team in the organization is to solve complex tasks or achieve specific goals, should give full play to the advantages of the team as a whole, but the information cognitive fracture zone makes it difficult to achieve the effective allocation of resources in the team, affect the team to complete the task and achieve the expected goals. Jehn & Bezrukova (2010 : 24-42) pointed out in the research that the information cognitive fault zone has an impact on the team's information processing and decision-making process, and the resulting sub-team wastes the team's information resources, which will have a negative impact on the team's decision-making, which is not conducive to the team efficiency. Accordingly, the following assumptions are made:

H2: Information-cognitive fault zone positively affects team efficiency

3. Relationship between team broken band and interactive memory system

The basic assumption of the interactive memory system is to promote the retrieval, storage, processing and application of knowledge, through the interpersonal relations among members. According to the concept connotation of the interactive memory system, the members' willingness to share knowledge is the basis for the team to form an interactive memory system. Lin Lingna and Shi Jiangang (2015 : 162-170) pointed out that many members in the actual work team will hide their own knowledge, it may be partly due to the existence of the social classification fault zone members are not willing to establish an exchange relationship with members outside the team, Li Hao and Huang Jian (2018 : 134-147) research shows that knowledge hidden on the formation of the team interactive memory system has a negative impact. Accordingly, the following assumptions are made:

H3: The social classification fracture system negatively affects the interactive memory system

4. Relationship between information cognitive fault zone and interactive memory system

The interactive memory system helps to understand how the team effectively integrates its members' heterogeneity expertise to complete team tasks and achieve team goals, and how to effectively search for the information and knowledge needed to handle complex problems, and therefore can also be regarded as a mechanism to explain the knowledge processing process of the team (Zhang Gang & Xiong Li, 2007 : 3 ; Huang Haiyan & Li Qianwen, 2011 : 186-191). Liao et al .(2012 : 204-240) It believes that these positive and meaningful interactive activities can help enhance the familiarity between subteam members and establish trust relationships among team members, so that team members can have higher acceptance and trust in information knowledge and advice from different fields. In a team, team fault zones based on differences in information cognition of team members can drive the development of interactive memory systems. Accordingly, the following assumptions are made:

H4: The information-cognitive fault zone positively affects the interactive memory system

5. The role of paradox leadership in regulating the team fault zone and team effectiveness

Leadership is one of the important factors affecting the creativity of employees. In this environment, leaders need to adopt holistic thinking to meet the multiple needs of employees and organizations simultaneously based on situational changes. Therefore, paradoxical leadership behavior has gradually attracted the attention of scholars (Zhang Y et al., 2015 : 533-544).

This study discusses how paradoxical leadership behavior affects team effectiveness based on social cognitive theory and social exchange theory. On the one hand, this paper believes that paradox leadership behavior helps to enhance teamwork. Social cognitive theory emphasizes cognitive factors and employees learn by observing the behavior of others. Leaders often play the role of an example in organizations and employee perceptions and behaviors are easily influenced by leaders. The above behavior of paradoxical leaders will set a positive example for their employees. Paradoxical leadership involves opposite ends: emphasizing both differentiation and control and rules, and they use holistic thinking to meet the needs of organizations and employees, showing how to accept contradictions in complex environments(Zhang Y et al., 2015 : 533-544).This paradoxical behavior of leaders can solve contradictory problems from different perspectives, thus promoting team members to think from different perspectives and find out multiple original ways to solve specific problems, which is conducive to the improvement of teamwork.

H5: Paradoxical leadership has a positive effect on regulating the social classification fault zone and team efficiency

H6: Paradoxical leadership has a positive regulatory effect on the information cognition fault zone and team efficiency

Empirical analysis of the impact of team fracture zone on team effectiveness

On the basis of understanding the social cognition theory, social information processing theory and social exchange theory, the empirical analysis is conducted according to the hypothesis made in this study.

Samples and data collection

The survey collected data by distributing questionnaires to the actual work team. The survey questionnaire is designed and distributed by matching the team leader and team members. That is, the survey includes two questionnaires, one is filled out by the team members, including basic personal information and interactive memory system; the other one is filled out by the team leader, including the number of team establishment, team size and team performance. In this study, 141 sets of questionnaires were distributed successively, including 141 for team leaders and 737 for team members. Finally, 586 questionnaires from 137 teams were recovered, with a recovery rate of 82.3%. According to the research needs, the teams with less than 4 teams and the questionnaires with incomplete personal statistics were excluded, and the 502 valid questionnaires from 107 teams finally met the requirements, with an effective rate of 84.2%.

Finding

Descriptive statistics and correlation analysis

In this paper, the Pearson correlation was used to first analyze the relationship between the variables in this study. First, descriptive statistical analysis and correlation analysis of variables are needed, and then test whether the study hypothesis is true. The descriptive statistical analysis and correlation analysis results are shown in Table 1 above: the mean and standard deviation of each variable are within a reasonable range, and the core variables are correlated in pairs, thus indicating that the measurement results of each study variable meet the data analysis standard, and hypothesis testing can be conducted.

Table 1 correlation of each dimension

Correlation test for each dimension	1	2	3	4	5	6	7
Team years 1	1						
Team size 2	-0.033	1					
Social classification 3	-.103*	.353* *	1				
Information cognition 4	0.07	-.247* *	-.134**	1			
The Interactive Memory System 5	-0.076	-.207* *	-.339**	.259* *	1		
Paradoxical Leadership 6	0.025	.177* *	.282**	-.324* *	-.777* *	1	
Team efficacy 7	-0.065	-.186* *	-.361**	.293* *	.738* *	-.700**	1
mean	4.300	1.470	0.434	0.541	3.587	2.151	3.783
standard deviation	1.685	0.503	0.205	0.195	0.844	0.971	0.979

Note: * Significant correlation at the 0.05 level (bilateral).** is in the...01 Level (bilateral) on a significant correlation.

hypothesis test

1 Main effect test

The results of the study hypothesis tested by regression analysis are shown in Table 2. According to Table 2, the regression model is constructed with the team fault band as the independent variable and the interactive memory system as the dependent variable, and the R square value of the model is 0.179, which shows that the goodness of fit is good and can explain the changes of the interactive memory system to a certain extent. An F-value of 27.037 and a significance value of 0.000 <0.05 were obtained, indicating that the model is valid. In model 1,

the team size has a significant control effect over the interactive memory system; the standardized regression coefficient of the independent variable social classification on the interactive memory system in model 2 is -0.305 ($P < 0.001$), indicating that the independent variable social classification has a significant negative effect on the interactive memory system, so the assumption is true. The standardized regression coefficient of the independent variable information cognition on the interactive memory system in model 2 was 0.214 ($P < 0.001$), indicating that the independent variable information cognition has a significant positive effect on the interactive memory system, so the assumption is true.

Table 2 Regression test of the team break band on the interactive memory system

variable	Interactive memory system	
	model 1	model 2
Team establishment years	-0.083	-0.124**
Team size	-0.21***	-0.051
Social classification		-0.305***
Information cognition		0.214***
R^2	0.05	0.179
ΔR^2	0.046	0.172
F	13.081***	27.033***
VIF		1.001-1.198

Note: * means $P < 0.05$, ** for $P < 0.01$, and *** for $P < 0.001$.

2 Regression analysis

Linear regression analysis was performed on the sample data. The regression test of the team efficiency and the interactive memory system showed the data results as shown in Tables 3 and 4.

Table 3 Regression test of team fracture zone on team effectiveness

variable	Team effectiveness	
	model 3	model 4
Team establishment years	-0.072	-0.118**
Team size	-0.188***	-0.009
Social classification		-0.336***
Information cognition		0.254***
R^2	0.04	0.205
ΔR^2	0.036	0.198
F	10.316***	31.985***

VIF	1.001-1.198
-----	-------------

Note: * means $P < 0.05$, ** for $P < 0.01$, and *** for $P < 0.001$.

According to Table 3 above, the common linear statistic VIF of the model is less than 5, indicating that the degree of collinearity between the independent variables is small, and the model is reasonable. Regression model was constructed by using the team break band as the independent variable and the team efficiency as the dependent variable. The R square value of the model is 0.205, which indicates that the goodness of fit is good and can explain the changes in team efficiency to some extent. An F-value of 31.985 and a significance value of $0.000 < 0.05$ were obtained, indicating that the model is valid.

The effect of the team break zone on the team effectiveness was mainly verified by establishing a regression model. The regression coefficient of control variables in Model 3 is significant in team size, indicating that team size has a significant control effect on team effectiveness. The standardized regression coefficient of independent variable social classification in Model 4 is -0.336 ($P < 0.001$), indicating that the classification of independent variables social has a significant negative impact on team effectiveness, so the hypothesis is true. The standardized regression coefficient of the independent variable information cognition on team effectiveness in model 4 was 0.254 ($P < 0.001$), indicating that the independent variable information cognition had a significant positive effect on team effectiveness, so the assumption holds.

Table 4 Regression test of team efficacy by the interactive memory system

variable	Team effectiveness	
	model 5	model 6
Team establishment years	-0.072	-0.011
Team size	-0.188***	-0.035
Interactive memory system		0.730***
R ²	0.04	0.546
ΔR ²	0.036	0.543
F	10.316***	199.314***
VIF		1.001-1.052

Note: * means $P < 0.05$, ** for $P < 0.01$, and *** for $P < 0.001$.

From Table 4, regression models were constructed by using the interactive memory system as the independent variable and team efficiency as the dependent variable. The model R square value is 0.546, indicating a good goodness of fit. An F-value of 199.314 and a significance value of $0.000 < 0.05$ were obtained, indicating that the model is valid. The regression coefficient of control variables in Model 5 is significant in team size, indicating that team size has a significant control effect on team efficiency. The standardized regression coefficient of the independent variable interactive memory system in Model 6 is 0.730 ($P < 0.001$), indicating that the social classification of independent variables has a significant positive impact on team efficiency, so the hypothesis is true.

3 Intermediation effect

(1) The mediation effect of the interactive memory system in social classification on team efficiency. According to Table 5, the colinear statistic, VIF, of the model, is less than 5, indicating that the degree of collinearity between the independent variables is small and the model is reasonable. As can be seen from the table, in model 9, after adding independent variable (social classification) and intermediary variable (interactive memory system), the regression coefficient of independent variable to dependent variable is -0.130, the regression is significant (P value is less than 0.001), and the regression coefficient of intermediary variable to dependent variable is 0.692, the regression is highly significant (P values are less than 0.001). Therefore, it can be determined that the interactive memory system partially mediates social classification and team effectiveness. Therefore, it is assumed to be established.

Table 5 Mediation effect of the interactive memory system in social classification on team effectiveness

variable	Team effectiveness		
	model 7	model 8	model 9
Team establishment years	-0.072	-0.103*	-0.026
Team size	-0.188***	-0.067	0.003
Social classification		-0.348***	-0.130***
Interactive memory system			0.692***
R ²	0.04	0.145	0.559
ΔR ²	0.036	0.14	0.555
F	10.316***	28.078***	157.43***
VIF			1.011-1.268

Note: * means P <0.05, ** for P <0.01, and *** for P <0.001.

(2) The mediation effect of the interactive memory system in information cognition on team effectiveness. According to Table 6, after the addition of both independent variable (information cognition) and intermediary variable (interactive memory system), the regression coefficient of independent variable to dependent variable was 0.108, and the regression was significant (P value is less than 0.001), and the regression coefficient of intermediary variable to dependent variable was 0.705, and the regression was highly significant (P values are less than 0.001). Therefore, it can be determined that the interactive memory system partially mediates information cognition and team effectiveness. Therefore, it is assumed to be established.

Table 6 Mediation effect of the interactive memory system in information cognition on team effectiveness

variable	Team effectiveness		
	model 10	model 11	model 12
Team establishment years	-0.072	-0.088	-0.02
Team size	-0.188***	-0.123**	-0.014
Information cognition		0.269***	0.108***
Interactive memory system			0.705***
R ²	0.04	0.107	0.556
ΔR ²	0.036	0.102	0.552
F	10.316***	19.923***	155.541***
VIF			1.001-1.127

Note: * means P<0.05, ** for P<0.01, and *** for P<0.001.

4. Regulating the effect

(1) Paradoxical leadership behavior on social classification and team effectiveness regulation effect. The tests were mainly using the multiple hierarchical regression analysis to test the study hypothesis results are shown in Table 7. The regression coefficients of control variables were significant in model 4, It shows that team size has a significant control effect on team efficiency; Social classification of the independent variables in Model 5 (= -0.182, P <0.001) and Paradox Leadership (= -0.645, P <0.001) has a significant impact on team effectiveness; The regression coefficient for the social-classification and paradoxically-led interaction terms in Model 6 was-0.193 (P <0.01), Explain that the interaction terms have a significant effect on team effectiveness, And the R² of model 5 is 0.524, The R² of Model 6 is 0.556, significantly enhance, Explain the enhanced interpretation ability of the model. Therefore, it is proved that the paradoxical leadership has a significant regulatory effect on social classification and team effectiveness.

Table 7 Test of the effect of paradoxical leadership behavior on social classification and team effectiveness regulation

variable	Team effectiveness		
	model 4	model 5	model 6
Team establishment years	-0.072	-0.068*	-0.062*
Team size	-0.188***	-0.01	0.004
Social classification		-0.182***	-0.225***
Paradoxical leadership		-0.645***	-0.574***
Social classification paradox of leadership			-0.193***
R ²	0.04	0.524	0.556

ΔR^2	0.036	0.52	0.551
F	10.316***	136.634***	124.032***

Note: * means $P < 0.05$, ** means $P < 0.01$, and *** means $P < 0.001$.

(2) The role of paradoxical leadership behavior on information cognition and team efficiency regulation. In Table 8, The regression coefficients for the control variables in Model 10 had a significant team size, It shows that team size has a significant control effect on team efficiency; Recognition of independent variable information in Model 11 ($=0.067$, $P > 0.05$) No significant impact on team effectiveness; Paradoxical Leadership ($= -0.668$, $P < 0.001$) has a significant impact on team effectiveness; The regression coefficient for the interaction terms of information cognition and paradoxical leadership behavior in model 12 was 0.150 ($P < 0.01$), Explain that the interaction terms have a significant effect on team effectiveness, And the R^2 of model 11 is 0.500, The R^2 of model 12 is 0.520, significantly enhance, Explain the enhanced explanatory power of the model. Therefore, it is proved that the paradoxical leadership of the regulatory variable has a significant regulatory effect on information cognition and team efficiency.

Table 8 Paradoxical leadership behavior on information cognition and team effectiveness regulation effect test

variable	Team effectiveness		
	model 10	model 11	model 12
Team establishment years	-0.072	-0.055	-0.035
Team size	-0.188***	-0.053	-0.027
Information cognition		0.067	0.107**
Paradoxical leadership		-0.668***	-0.646***
Information-Cognitive Paradox Leadership			0.150***
R^2	0.04	0.500	0.520
ΔR^2	0.036	0.496	0.516
F	10.316***	124.481***	107.647***

Note: * means $P < 0.05$, ** means $P < 0.01$, and *** means $P < 0.001$.

Discussion and conclusion

Previous scholars on the relationship between team fracture zone and team efficiency research conclusion is too absolute, although some scholars consider the influence team fault zone role situation factors, but the research depth is not enough, especially about the team fracture zone effect on team efficiency of the internal mechanism process is always in the "black box" stage. Therefore, in Chen Shuai (2012 : 65) research paradigm, based on the team fracture zone refinement into social classification fault zone and information cognitive fracture zone two dimensions, and based on 107 enterprise team samples, the empirical study in the

paradoxical leadership behavior regulation and interactive memory system under the relationship between team fracture zone and team efficiency. The study results show that the: (1) The fault zone formed by the differences in information cognition can positively affect the team efficiency, and the degree of this influence is regulated by the paradoxical leadership behavior. The impact of team break zones based on the combination of demographic characteristics is different on team efficiency is different. This paper makes further research on team break zones and their relationship with team efficiency from the perspective of information-cognitive differences in demographic characteristics. (2) The fracture zone formed by social population classification has a negative impact on team efficiency, but this negative impact is also regulated by the paradoxical leadership behavior. When there is a strong paradoxical leadership behavior in the team, the social classification fracture zone contributes to the improvement of team efficiency. The results of this study further expand the views of Chen Shuai (2012 : 65) et al. They all point out that the fault zone formed based on the social and population classification characteristics negatively affects the team effectiveness. Based on this paper, further research shows that this negative influence degree can be reduced or even eliminated by the paradoxical leadership behavior. (3) In the mediating effect of paradoxical leadership behavior on the relationship between the two dimensions of team fault zone and team efficiency, the interactive memory system plays an intermediary role, that is, the interactive memory system effectively transmits the influence of paradoxical leadership behavior, social classification fault zone and information cognitive fault zone on team efficiency respectively. The conclusion is to Bezrukova (2009 : 35-50) the further deepening of the results, although scholars distinguish the type of different fault zones and its relationship with team efficiency, but not on the relationship between the two "black box" analysis, and this paper reveals the team from the perspective of information processing and the internal mechanism of the relationship between team efficiency.

Insufficient research and future research directions

This paper explores how, under paradoxical leadership behavior regulation, The team fracture zone can effectively play a positive effect, And mediating in the interactive memory system, The mechanism of the internal action of the team fracture zone on the team efficiency is further analyzed, However, this study still has some limitations, It is mainly manifested in: (1) the selection of variables, This paper is based on two contextual variables, paradoxical leadership behavior and interactive memory system, In fact, there are many factors affecting the team fault zone (such as team introspection, team type, etc.), Future research can be further extended to other situational variables to explore the relationship between team fault zone and team effectiveness; (2) Statistical index for the calculation of fault band strength, The calculation of the strength of fracture bands mainly considers explicit statistical indicators such as gender, age, education and work experience, Compared with the members' personality, ideas and other hidden indicators have not been involved, And these hidden indicators are also the important characteristics of the team members, Follow-up studies can be made for in-depth analysis; (3) Team sample data, Due to the restriction of objective factors, The data of this study were mainly derived from enterprises in northwest China, And only a representative of 107 team samples were selected, Future studies could further expand the sample range and team sample size, Continue to supplement and improve the research conclusions of this paper; (4) There are many team sources in this article, Bring in many unmanageable variables to the empirical model, Affect the model output results, Follow-up studies can further select more representative teams and the corresponding data.

Reference

Bezrukova K, & Jehn K A , (2009).Thatcher S M B .Do workgroup faultlines help or hurt?A moderated model of faultlines , team identification, and group performance. *Organization Science* , 20 (1), 35-50.

Cronin M A, Bezrukova K, & Weingart L R, et al. (2011) Subgroups within a team: The role of cognitive and affective integration. *Journal of Organizational Behavior* , 32 (6), 831 - 849.

Hackman J R. (1987) .The design of work teams.In J.W.Lorsch (Ed.), *Handbook of organizational behavior*.Englewood Cliffs, NJ : Prentice Hall.315?42.

Huang Haiyan, & Li Qianwen.(2011) Personality heterogeneity and innovation performance of R & D team members: with the interactive memory system as the intermediary variable. *Intelligence Journal*, 30 (4), 186-191.

Jehn K A, & Bezrukova K. (2010) The faultline activation process and the effects of activated faultlines on coalition formation, conflict, and group outcomes. *Organizational Behavior and Human Decision Processes* , 112 (1), 24-42.

Lau D C, & Murnighan J k.(1998).Demographic diversity and faultlines : The compositional dynamics of organizational groups .*Academy of Management Review*, 23 (2), 325-340.

Li Hao, C & Huang Jian.(2018) Study on the influence of team knowledge hiding on interactive memory system. *Nankai Management Review*, 21 (4), 134-147.

Liao J, Jimmieson N L, & O'Brien A T, et al. (2012) Developing transactive memory systems: Theoretical contributions from a social identity perspective .*Group Organization Management*, 37 (2), 204-240.

Lin Linna, Shi Jiangang, middle & Tang Dynasty.(2015) Consider the knowledge hidden project team knowledge sharing incentive research. *Scientific research management*, 36 (5), 162-170.

Luo Jinlian, Hu Wenan, & Zhong Jing.(2017) The impact of paradoxical leadership and team vitality on team *innovation mechanism research management comment* 29 (7), 122-134..

Chen Shuai. (2012) Research on the relationship between team fault zone and team performance from the perspective of knowledge. PhD dissertation of Zhejiang University.

Lv Jie, C & Zhang Gang.(2015) Impact mechanism of knowledge heterogeneity on the creativity of knowledge-based teams: the perspective based on interactive cognition. *Psychological Journal*, 47 (4), 533-544.

McGrath J.E. (1964) Socia Psychology : *A Brief Introduction*.New York:Holt , Rinchart & Winston, 1964, 102-103.

Starke D F A.(1999).The formation of breakaway organizations: Observations and a process model. *Administrative Science Quarterly* , 44 (4), 792-822.

Tjosvold D, Poon M, & Yu Z. (2005) *Team Effectiveness in China* : Cooperative Conflict for Relationship Building Human Relations, 58 (3), 341-367..

Zhang Gang, & G Xiong Li.(2007) Review and prospect of interactive memory system research. *Progress in Psychological Science*, (5), 840845.