

# **Vocational College Pre-School Education Students' Satisfaction Towards the Use of the Superstar Application to Teach Hands-On Art Class**

**Peifang Chen and Thanawan Phognsatha**

Assumption University, Thailand

Corresponding Author, E-mail: 421945345@qq.com

\*\*\*\*\*

## **Abstract**

Mobile learning was popular during the epidemic, and a number of schools in China used the Superstar Application to assist distance learning. Therefore, it is relevant to investigate students' satisfaction with the use of the Superstar application in the classroom to enhance student learning.

The purpose of the study was 1) To identify the factors that affect vocational colleges students' satisfaction with the Superstar application, and 2) To determine the level of vocational college students' satisfaction towards the Superstar Application.

This research utilized a quantitative approach, using a questionnaire as a survey tool to collect sample data from the target population. The purposive sampling strategy, inviting 415 students from Deyang Vocational College of Technical and Trade to participate in the research. Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM) were employed to assess the model's fit and establish the causal relationships between the variables for hypothesis testing.

The research's conceptual framework was constructed upon the foundation of the Web-based Learning Environment Instrument (WEBLEI) and the Expectation-Confirmation Model (ECM), with seven variables being identified as access, interaction, response, result, perceived usefulness, confirmation, and satisfaction. It was found that six of the seven hypotheses proposed were proven to achieve the research objectives, while the hypothesis between confirmation and satisfaction was not proven. The results of the study showed that the factors affecting students' satisfaction with the Superstar Application in vocational and technical colleges were access, interaction, response, result, and perceived usefulness; with perceived usefulness being the strongest predictor directly affecting the Superstar Application; and the result variable had a significant effect on students' satisfaction with Superstar Application use. In addition, the study also found that although confirmation did not directly impact satisfaction, confirmation played a significant role in perceived usefulness.

**Keywords:** Superstar Application, Technology-Enhanced Learning, Vocational College Students, Pre-school Education, Web-Based Learning

## **Introduction**

As the epidemic spreads, many people were opting for mobile learning. According to Kumar Basak et al. (2018), m-learning was the process of acquiring new information and skills using a mobile device (e.g., smartphone or tablet)(Yeap et al., 2016), which enabled students to learn beyond space and time. Students could use their mobile devices to learn at any time of the day, free from the confines of the traditional classroom (Loh et al., 2022). In addition, social media (e.g., Facebook) and instant messaging (e.g., WhatsApp) platforms allow teachers to

---

<sup>1</sup>Received: March 29 2024; Revised: May 8 2024; Accepted: May 9 2024

conduct online debates, make important announcements, and distribute resources (Bordoloi et al., 2021). With social media platforms, instant messaging applications, online chat rooms and forums, audio and video conversations, and advanced communication technologies, students and teachers can communicate easily and quickly. Because of the technological effectiveness and versatility of mobile devices, m-learning had become the most popular choice among the learning systems implemented in higher education worldwide during the epidemic (Biswas et al., 2020). For example, they used educational applications to increase students' interest in learning (Yahaya & Zaini, 2020), to enrich learning content, to encourage peer social interaction (Al-Emran et al., 2020), and to enhance students' learning experience (Wang et al., 2018). One example of this was the use of the Superstar Application to enhance students' interest in learning. Considering that confirmation, and perception of perceived usefulness could affect their satisfaction with learning. Therefore, it was particularly important to investigate students' satisfaction with the use of the Superstar Application in the classroom to enhance student learning.

This study provided two models that form a conceptual model to test the role of the Superstar Applications in drawing learning through a questionnaire. This research examined the results derived from the Web-Based Learning Environment Instrument (WEBLEI), Expectation-Confirmation Model (ECM), to reflect the impact of instruction through the Superstar Application on students' learning of drawing, leading to better use of technology for learning and increased student engagement in Technology-Enhanced Learning (TEL). Although these two models were widely used, most of the courses using the model were lecture-based, while pre-school art course was hands-on, so this paper focused on examining the use of the Superstar Application in hands-on art classes.

For students, technology fostered independent learning. E-learning technology allowed students to adjust their study plans according to their personal time. And with the popularity of interactive software such as the Superstar Application, students could access class resources more easily and learn more effectively.

For teachers, it reduced repetitive work and improved the efficiency of teaching. This was mainly reflected in the fact that teachers could correct students' homework anytime and anywhere, and students could also revise their homework immediately after getting timely feedback from teachers. At the same time, students could also tap the Superstar Application to watch if they didn't understand something, which reduced the teacher's repetitive labor. In short, this optimized the teaching mode, and improved students' performance.

For university administrators, the adoption of the Superstar Application optimized the management process and provided a more comfortable teaching environment.

For policy makers, education was to continuously meet the needs of students, in order to students could be faster and in line with the times, so the combination of online and offline teaching methods was also conducive to the development of the school.

This research was conducted to investigate the satisfaction of pre-school education majors in Deyang Vocational College of Technical and Trade with the use of the Superstar Application for teaching hands-on art classes.

## Research Objectives

The research objectives had been formulated as follows.

- 1) To identify the factors that affect vocational colleges students' satisfaction with the Superstar application.
- 2) To determine the level of vocational college students' satisfaction towards the Superstar Application.

## Literature Review

### **The Web-Based Learning Environment Instrument (WEBLEI)**

The WEBLEI which arose due to the increasing popularity of online learning, and the WEBLEI which had our main scales. Three of them were based on Tobin's findings and were access, interaction, and response scales (Tobin, 1998). The resulting scale was the last part of the questionnaire and includes questions about the organization and content of the internet course.

Web-based learning was defined as a form of distance education that utilized computers and Internet technology (Allen & Seaman, 2008). And the Web-based Learning Environment Instrument (WEBLEI) had four main scales. Three of the scales - the Emancipatory Scale, the Co-Participation Scale, and the Qualia Scale - were based on Tobin's (1998) findings on Connecting Communities for Learning (CCL). The other scale focused on information architecture and the design of online materials (Chang & Fisher, 2001). Facilitation, efficiency, and autonomy of learners' emancipatory behaviors were the focus of the Emancipation subscale. The co-participation subscale focused on six aspects of facilitating learning in virtual communities: flexibility, reflection, quality, interaction, feedback, and collaboration. According to Tobin (1998), the six elements of the Qualia subscale were enjoyment, confidence, achievement, success, frustration, and boredom. Chang and Fisher (2001) created a fourth subscale called results, which focused on the organization of information and the layout of online materials. This section included content relevance and scope, content effectiveness, content accuracy and balance, navigation, and aesthetic and emotional aspects. The researcher used access (Emancipatory Scale), interaction (Co-Participation Scale), response (Qualia Scale), and result (Information Structure and Design Scale) as variables.

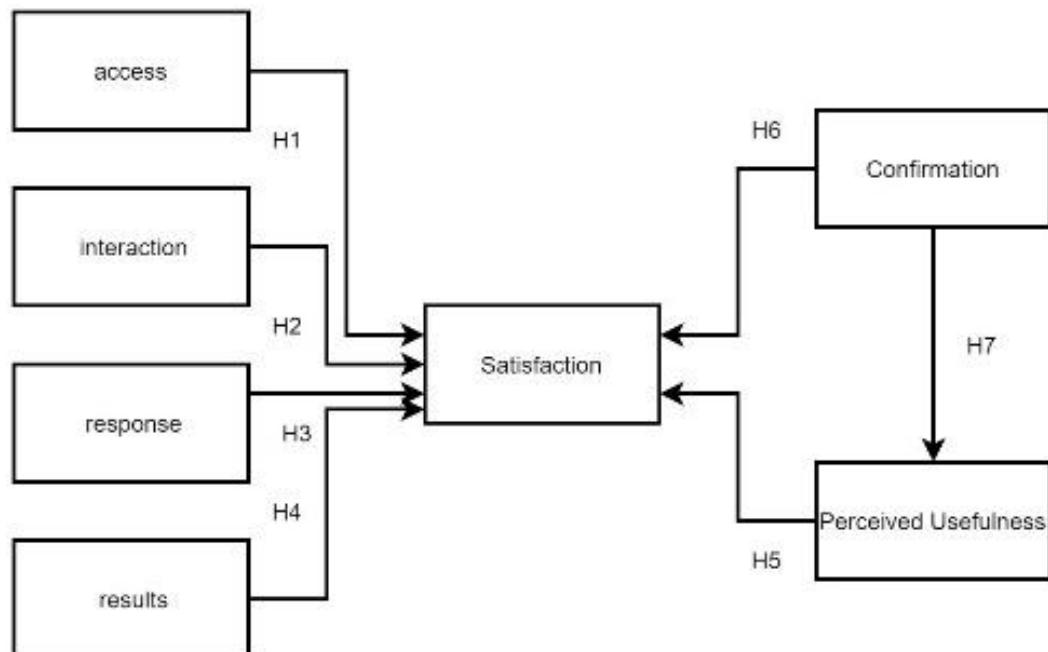
### **Technology-Enhanced Learning (TEL) Theory**

TEL was often defined as learning that took place using ICT and web-based educational technologies. Therefore, TEL was also known as e-learning, mobile learning, technology-assisted learning, and technology-based learning(Dubey & Sahu, 2021).

In face-to-face learning, technology enriched it; in blended learning courses, technology reduced human contact; and in the process of distance learning, technology allowed for self-directed learning. From here we could see that technology played an increasingly important role (Kirkwood & Price, 2014). Within this broader context, the convergence of Information and Communication Technology (ICT) had revolutionized the way we teach and give rise to Technology Enhanced Learning (TEL). ICT had become an important factor in education due to its versatility, affordability, accessibility, and freedom from the traditional constraints of time and place. As a result, teaching methods had become more flexible and able to seamlessly adapt to new technologies to provide a more dynamic learning experience (Becker & Ravitz, 1999). How technology improves education and how much value it adds to the learning process was a matter of concern. The term enhancement implies that something

was superior or better in some way. Similarly, TEL implied a value judgment (Kirkwood & Price, 2014).

### Expectation-Confirmation Model Theory (ECM)


This theory was adapted from the consumer behavior literature and combined with theoretical and empirical data from previous research on information systems use to create an information systems persistence model (Bhattacherjee, 2001).

Expectation-confirmation theory (ECT) had been widely used in the consumer behavior literature to study consumer satisfaction, post-purchase behaviors (e.g., re-purchase, complaints), and service marketing (Dabholkar et al., 2000; Oliver, 1980; Patterson et al., 1997; Tse & Wilton, 1988). However, a number of theoretical extensions were needed to adapt ECT to a different context (i.e., the persistence of IS), and these extensions offer unique opportunities for theoretical refinement. They had the potential to explain IS continuance decisions better than ECT. Within this framework, there were four variables, the independent variable was confirmation, the intermediate variables were perceived usefulness and satisfaction, and the dependent variable was the intention to continue using the information system.

### Research Conceptual Framework

The conceptual framework of this study was based on two previous theoretical frameworks (WEBLEI, ECM).

The independent variables of the study were access, interaction, response, result and confirmation. The intermediate variable was perceived usefulness. The dependent variable was students' satisfaction in using the Superstar Application. Regarding the conceptual framework, there were 7 variables and 7 relationships.



**Figure 1:** Research Conceptual Framework

Based on the conceptual framework, the hypotheses were developed as follows.

### ***Hypotheses Testing***

$H_01$ : Access to the Superstar Application does not influence students' satisfaction.

$H_{a1}$ : Access to the Superstar Application influences students' satisfaction.

$H_02$ : The interaction of the Superstar Application does not influence students' satisfaction.

$H_{a2}$ : The interaction of the Superstar Application influences students' satisfaction.

$H_03$ : The response of the Superstar Application does not influence students' satisfaction.

$H_{a3}$ : The response of the Superstar Application influences students' satisfaction.

$H_04$ : The result of the Superstar Application does not influence students' satisfaction.

$H_{a4}$ : The result of the Superstar Application influences students' satisfaction.

$H_05$ : Perceived usefulness of Superstar Application does not influence students' satisfaction towards the use of Superstar Application.

$H_{a5}$ : Perceived usefulness of Superstar Application influences students' satisfaction towards the use of Superstar Application.

$H_06$ : Confirmation does not affect students' satisfaction with the use of the Superstar Application.

$H_{a6}$ : Confirmation affects students' satisfaction with the use of the Superstar Application.

$H_07$ : Confirmation of expectations isn't related to their perceived usefulness of the Superstar Application.

$H_{a7}$ : Confirmation of expectations is positively related to their perceived usefulness of the Superstar Application.

## **Research Methodology**

### **Research design**

This study used quantitative research to examine students' satisfaction with the Superstar Application used for teaching art. A survey was conducted using Questionnaire Star in this process.

### **Population and Sample**

Population: The focus of this study was on students in an art-related program at a vocational-technical college. Through the use of the Superstar Application, students were able to preview and review content placed on the Superstar Application by the instructor before and after class by accessing the content. During formal classes students use the Superstar Application under the guidance of the instructor and actively participate in classroom activities.

Sample: The representative target population in this study was the vocational college preschool education students of Deyang Vocational College of Technical and Trade and all sampling units can be generalized to represent all students. In order to get the results of the survey more accurately, the participants were 415 students of preschool education majors from Deyang Vocational College of Technical and Trade, and the participants participated voluntarily. A purposive sampling method was used in this study to draw the sample from the Deyang Vocational College of Technical and Trade.

## Research Instruments

### Questionnaire

The questionnaire for this study consisted of two parts: scale items for all observed variables and demographic information.

The questionnaire consisted of two sections.

Part 1: Demographic information of the respondents, including gender, grade.

Part 2: Seven factors, including access, interaction, response, result, satisfaction, perceived usefulness, and confirmation, were evaluated using the 23 questionnaire items in the first section. Furthermore, the WEBLEI was formulated by Chang and Fisher (2003), the satisfaction and confirmation scale was developed by Bhattacherjee (2001), and the perceived usefulness scale was established by Davis (1989).

**Table 1:** Operationalization Table of “access, interaction, response, result, satisfaction, perceived usefulness, and confirmation.”

| Variable | Definition                                                                                                   | Operationalization                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sources                | Measurement                                 |
|----------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|
| Access   | The access scale measures the accessibility of the learning environment to students (Demirtaş et al., 2021). | <ol style="list-style-type: none"> <li>1. I can access lessons on the Superstar Application at a time convenient to me.</li> <li>2. Lessons on the Superstar Application are available at locations suitable for me.</li> <li>3. I can access lessons on the Superstar Application on days when I do not have class or am absent from school.</li> <li>4. Lessons on the Superstar Application allow me to work at my own pace to achieve learning objectives.</li> </ol> | (Chang & Fisher, 2003) | A 5-point Likert Scale survey questionnaire |

|                    |                                                                                                                       |                                                                                                                                                                                                                                                          |                        |                                             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|
|                    |                                                                                                                       | 5. Lessons on the Superstar Application enable me to decide how much I want to learn in a given period.                                                                                                                                                  |                        |                                             |
| <b>Interaction</b> | The interaction scale investigates how beneficial students judge distance education to be (Demirtaş et al., 2021).    | 6. I communicate with my teacher on this subject electronically via the Superstar application.<br>7. I have the option to ask my teacher what I do not understand via the Superstar Application.                                                         | (Chang & Fisher, 2003) | A 5-point Likert Scale survey questionnaire |
| <b>Response</b>    | The response scale indicates how students feel and think about the web-based learning system (Demirtaş et al., 2021). | 8. The teacher responds to my Superstar Application.<br>9. I can learn more in this environment.<br>10. I can easily get students to work with me on the Internet.<br>11. It is easy to work with other students and discuss the content of the lessons. | (Chang & Fisher, 2003) | A 5-point Likert Scale survey questionnaire |
| <b>Results</b>     | The results scale expresses the extent to which students believe they accomplished                                    | 12. The organization of each lesson on the Superstar Application is easy to follow.                                                                                                                                                                      | (Chang & Fisher, 2003) | A 5-point Likert Scale survey questionnaire |

|                             |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                       |                                             |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|
|                             | any of the learning objectives within the online learning environment (Demirtaş et al., 2021).                                                                                 | 13. Superstar Application lessons help me better understand the work that is delivered in class.<br>14. The subject content is appropriate to be delivered on the Superstar Application.                                                                                                                                     |                       |                                             |
| <b>Satisfaction</b>         | Satisfaction in this study measures the individual's psychological or emotional state of experience as a virtual communication user (Bhattacherjee, 2001; Zheng et al., 2013). | 15. I am satisfied with the performance of the Superstar Application.<br>16. I am pleased with the experience of using the Superstar Application.<br>17. The use of the Superstar Application improves my ability to integrate information<br>18. I am satisfied with the learning flexibility of the Superstar Application. | (Bhattacherjee, 2001) | A 5-point Likert Scale survey questionnaire |
| <b>Perceived Usefulness</b> | Perceived usefulness is defined here as the degree to which a person believes that using a particular                                                                          | 19. Using the Superstar Application can improve my learning performance.<br>20. Using the Superstar                                                                                                                                                                                                                          | (Davis, 1989)         | A 5-point Likert Scale survey questionnaire |

|                     |                                                                                                                                |                                                                                                                                                                       |                       |                                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|
|                     | system would enhance his or her job performance. (Davis, 1989)                                                                 | Application can increase my learning effectiveness.                                                                                                                   |                       |                                             |
|                     |                                                                                                                                | 21. I find the Superstar Application to be useful to me.                                                                                                              |                       |                                             |
| <b>Confirmation</b> | Confirmation was a significant predictor of satisfaction and perceived usefulness in the proposed model. (Bhattacherjee, 2001) | 22. My experience with using the Superstar Application is better than I expected.<br>23. The service provided by the Superstar Application is better than I expected. | (Bhattacherjee, 2001) | A 5-point Likert Scale survey questionnaire |

### ***Pilot Test***

This study was pilot-tested through an online questionnaire published by Questionnaire Star. The data were collected from 40 students majoring in pre-school education at Deyang Vocational College of Technical and Trade.

### ***Validity of Research Instruments***

The research instrument used in this study was modified from previous studies, which confirmed its construct validity. To further ensure the validity of the questionnaire, three experts with more than twenty years of research and professional experience in art-related fields were invited to evaluate the items of the questionnaire. One of the experts was a Ph.D., one was a professor, and one was an associate professor, all of whom were qualified to assess the validity of the questionnaire. In assessing the items for each construct, the study used a threshold score of 1 (if the item measured the construct with certainty), 0 (if the item's ability to measure the construct was uncertain), or -1 (if the item could not measure the construct with certainty). According to Hambleton et al. (1978), items with an IOC score of less than 0.5 should be deleted.

### ***Reliability of Research Instruments***

Table 2 displayed the Cronbach's alpha for each construct as determined by Jamovi. For the majority of the structures, the alpha was greater than 0.9. It showed that the access scale has 5 items and a Cronbach's Alpha coefficient of 0.979, which is higher than 0.9, indicating that the reliability test results were good for the access scale. Similarly, strong reliability test results may be drawn for the other scales, which include interaction, response, result, satisfaction, perceived usefulness, and confirmation.

**Table 2:** Pilot Test Results of Cronbach's Alpha of the Research Instruments

| Variable             | Number of Items | Cronbach's Alpha |
|----------------------|-----------------|------------------|
| Access               | 5               | 0.979            |
| Interaction          | 3               | 0.982            |
| Response             | 3               | 0.992            |
| Results              | 3               | 0.983            |
| Satisfaction         | 4               | 0.967            |
| Perceived usefulness | 3               | 0.977            |
| Confirmation         | 2               | 0.976            |

### Data Collection Procedures

Questionnaire Star was the online survey tool for this study. The researchers created a web-based Chinese questionnaire on this platform and pushed the link to the questionnaire to the target group of students via WeChat. Students could then fill in the answers via their cell phones or computers. After collecting the questionnaires, the researchers eliminated questionnaires that took a short time to fill out or had too many single answers to ensure the validity of the questionnaires. Once the data collection was completed, the researcher conducted statistical processing using Jamovi software in order to analyze the results in a meaningful way.

## Research Results

### Demographic Information

The sample in this part includes details on the 415 students' personal characteristics, such as their grade level and gender, which would be reflected in the descriptive analysis of demographic data. The detail information was showed in Table 3. The demographic characteristics of the respondents were summarized in terms of frequency and percentage. Respondents were predominantly female, accounting for 84.6 % of the total sample, while males accounted for 15.4 %. In terms of academic year, 36.1 % were freshmen, 58.6 % were sophomores, and 5.3 % were juniors.

**Table 3:** Demographic Information of Samples

| Variable      | Category     | Frequency  | Percentage  |
|---------------|--------------|------------|-------------|
| Gender        | Male         | 64         | 15.4 %      |
|               | Female       | 351        | 84.6 %      |
|               | <b>Total</b> | <b>415</b> | <b>100%</b> |
| Year of Study | Year 1       | 150        | 36.1 %      |
|               | Year 2       | 243        | 58.6 %      |
|               | Year 3       | 22         | 5.3 %       |
|               | <b>Total</b> | <b>415</b> | <b>100%</b> |

The value of the standard deviation is close to 0, indicating that the distribution of the data is unchanged and close to the mean. The standard deviation for all items ranged from 0.61 to 0.677, which indicates that there is less variability within the data set. The average mean value ranged from 4.130 to 4.240.

**Table 4:** Descriptive Statistics of Each construct

| <b>Construct</b>          | <b>Number of items</b> | <b>Average Mean</b> | <b>Average SD</b> |
|---------------------------|------------------------|---------------------|-------------------|
| Access (Acc)              | 5                      | 4.240               | 0.617             |
| Interaction (Int)         | 3                      | 4.187               | 0.643             |
| Response (Resp)           | 3                      | 4.153               | 0.659             |
| Result (Resu)             | 3                      | 4.177               | 0.638             |
| Satisfaction (Sa)         | 4                      | 4.160               | 0.624             |
| Perceived Usefulness (PU) | 3                      | 4.130               | 0.661             |
| Confirmation (Con)        | 2                      | 4.145               | 0.644             |

All of the skewness values in Table 5 were negative and near to zero (between -0.428 and -0.108), suggesting that the distribution's long tail was to the left. Trochim and Donnelly (2006) had proven that the normal curves for skewness at -2 and +2 were acceptable. Additionally, the majority of the kurtosis values (-0.618 to 0.253) have a flat shape and were negative and around zero. A realistic scenario, according to Hair Hair Jr et al. (2010), was skewness range of -2 to +2 and kurtosis range of -7 to +7.

**Table 5:** Normality of Data

|       | <b>N</b> | <b>Mean</b> | <b>SD</b> | <b>Skewness</b> | <b>SE</b> | <b>Kurtosis</b> | <b>SE</b> |
|-------|----------|-------------|-----------|-----------------|-----------|-----------------|-----------|
| Acc1  | 415      | 4.210       | 0.632     | -0.203          | 0.120     | -0.618          | 0.239     |
| Acc2  | 415      | 4.250       | 0.608     | -0.183          | 0.120     | -0.549          | 0.239     |
| Acc3  | 415      | 4.260       | 0.624     | -0.428          | 0.120     | 0.253           | 0.239     |
| Acc4  | 415      | 4.250       | 0.610     | -0.195          | 0.120     | -0.564          | 0.239     |
| Acc5  | 415      | 4.230       | 0.611     | -0.233          | 0.120     | -0.229          | 0.239     |
| Int1  | 415      | 4.200       | 0.630     | -0.300          | 0.120     | -0.075          | 0.239     |
| Int2  | 415      | 4.200       | 0.639     | -0.317          | 0.120     | -0.149          | 0.239     |
| Int3  | 415      | 4.160       | 0.660     | -0.288          | 0.120     | -0.324          | 0.239     |
| Resp1 | 415      | 4.170       | 0.628     | -0.208          | 0.120     | -0.306          | 0.239     |
| Resp2 | 415      | 4.130       | 0.672     | -0.351          | 0.120     | -0.069          | 0.239     |
| Resp3 | 415      | 4.160       | 0.677     | -0.345          | 0.120     | -0.273          | 0.239     |
| Resu1 | 415      | 4.170       | 0.659     | -0.344          | 0.120     | -0.105          | 0.239     |
| Resu2 | 415      | 4.190       | 0.615     | -0.141          | 0.120     | -0.504          | 0.239     |
| Resu3 | 415      | 4.170       | 0.639     | -0.333          | 0.120     | 0.093           | 0.239     |

|      |     |       |       |        |       |        |       |
|------|-----|-------|-------|--------|-------|--------|-------|
| Sa1  | 415 | 4.160 | 0.639 | -0.204 | 0.120 | -0.374 | 0.239 |
| Sa2  | 415 | 4.160 | 0.617 | -0.112 | 0.120 | -0.470 | 0.239 |
| Sa3  | 415 | 4.170 | 0.609 | -0.108 | 0.120 | -0.439 | 0.239 |
| Sa4  | 415 | 4.150 | 0.631 | -0.244 | 0.120 | -0.069 | 0.239 |
| PU1  | 415 | 4.120 | 0.665 | -0.236 | 0.120 | -0.380 | 0.239 |
| PU2  | 415 | 4.130 | 0.655 | -0.238 | 0.120 | -0.289 | 0.239 |
| PU3  | 415 | 4.140 | 0.662 | -0.258 | 0.120 | -0.344 | 0.239 |
| Con1 | 415 | 4.130 | 0.659 | -0.250 | 0.120 | -0.323 | 0.239 |
| Con2 | 415 | 4.160 | 0.628 | -0.192 | 0.120 | -0.297 | 0.239 |

### Confirmatory Factor Analysis (CFA)

Table 6 showed the data results, Average Variance Extracted (AVE), Composite Reliability (CR) and Factor loadings (Estimate) extracted for all items in the confirmatory factor analysis.

For the accuracy of the additional measurements of the structure matrix, the researchers summarized the metrics of the validated factor analysis in this section. The factor loading values ranged from 0.542 to 0.618, the average variance extracted values ranged from 0.797 to 0.845, and the composite reliability ranged from 0.9 to 0.959, which are all ideal.

**Table 6:** Confirmatory factor analysis result, Composite Reliability (CR) and Average Variance Extracted (AVE)

| Factor       | Indicator | Estimate | SE    | Z      | p     | Stand. Estimate | AVE   | CR    |
|--------------|-----------|----------|-------|--------|-------|-----------------|-------|-------|
| Access       | Acc1      | 0.578    | 0.024 | 24.300 | <.001 | 0.915           | 0.825 | 0.959 |
|              | Acc2      | 0.556    | 0.023 | 24.300 | <.001 | 0.916           |       |       |
|              | Acc3      | 0.557    | 0.024 | 23.300 | <.001 | 0.894           |       |       |
|              | Acc4      | 0.566    | 0.023 | 24.900 | <.001 | 0.929           |       |       |
|              | Acc5      | 0.542    | 0.024 | 23.000 | <.001 | 0.887           |       |       |
| Interaction  | Int1      | 0.574    | 0.024 | 23.900 | <.001 | 0.912           | 0.818 | 0.931 |
|              | Int2      | 0.578    | 0.024 | 23.700 | <.001 | 0.906           |       |       |
|              | Int3      | 0.590    | 0.025 | 23.200 | <.001 | 0.895           |       |       |
| Respond      | Resp1     | 0.537    | 0.025 | 21.600 | <.001 | 0.855           | 0.797 | 0.921 |
|              | Resp2     | 0.618    | 0.025 | 24.400 | <.001 | 0.921           |       |       |
|              | Resp3     | 0.609    | 0.026 | 23.500 | <.001 | 0.901           |       |       |
| Result       | Resu1     | 0.578    | 0.026 | 22.600 | <.001 | 0.879           | 0.816 | 0.93  |
|              | Resu2     | 0.572    | 0.023 | 24.900 | <.001 | 0.931           |       |       |
|              | Resu3     | 0.574    | 0.024 | 23.500 | <.001 | 0.900           |       |       |
| Satisfaction | Sa1       | 0.575    | 0.024 | 23.700 | <.001 | 0.902           | 0.841 | 0.954 |
|              | Sa2       | 0.576    | 0.023 | 25.300 | <.001 | 0.936           |       |       |
|              | Sa3       | 0.558    | 0.023 | 24.400 | <.001 | 0.918           |       |       |
|              | Sa4       | 0.575    | 0.024 | 24.200 | <.001 | 0.912           |       |       |

|                  |      |       |       |        |       |       |       |       |
|------------------|------|-------|-------|--------|-------|-------|-------|-------|
| Perceive<br>d    | PU1  | 0.612 | 0.025 | 24.500 | <.001 | 0.921 | 0.845 | 0.943 |
| Usefulne<br>ss   | PU2  | 0.597 | 0.025 | 24.100 | <.001 | 0.912 |       |       |
|                  | PU3  | 0.611 | 0.025 | 24.700 | <.001 | 0.925 |       |       |
| Confirm<br>ation | Con1 | 0.600 | 0.025 | 23.900 | <.001 | 0.912 | 0.818 | 0.90  |
|                  | Con2 | 0.563 | 0.024 | 23.200 | <.001 | 0.897 |       |       |

### Discriminant Validity

In AVE analysis, the square root of each AVE value associated with a construct was compared to the correlation between any pair of constructs, ensuring that the former was significantly larger than the latter (Zaīt & Berte, 2011). According to the study's results on discriminant validity, the square roots of AVE are 0.908, 0.904, 0.893, 0.904, 0.917, 0.919, and 0.905. For the non-diagonal region, the square roots of each of them are larger than the interconnecting covariance. Consequently, this empirical study's discriminant validity is upheld.

**Table 7:** Discriminant Validity

|      | Acc          | Int          | Resp         | Resu         | Sa           | PU           | Con          |
|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Acc  | <b>0.908</b> |              |              |              |              |              |              |
| Int  | 0.822        | <b>0.904</b> |              |              |              |              |              |
| Resp | 0.794        | 0.835        | <b>0.893</b> |              |              |              |              |
| Resu | 0.801        | 0.794        | 0.856        | <b>0.904</b> |              |              |              |
| Sa   | 0.798        | 0.78         | 0.859        | 0.902        | <b>0.917</b> |              |              |
| PU   | 0.741        | 0.765        | 0.81         | 0.861        | 0.9          | <b>0.919</b> |              |
| Con  | 0.746        | 0.728        | 0.808        | 0.828        | 0.864        | 0.875        | <b>0.905</b> |

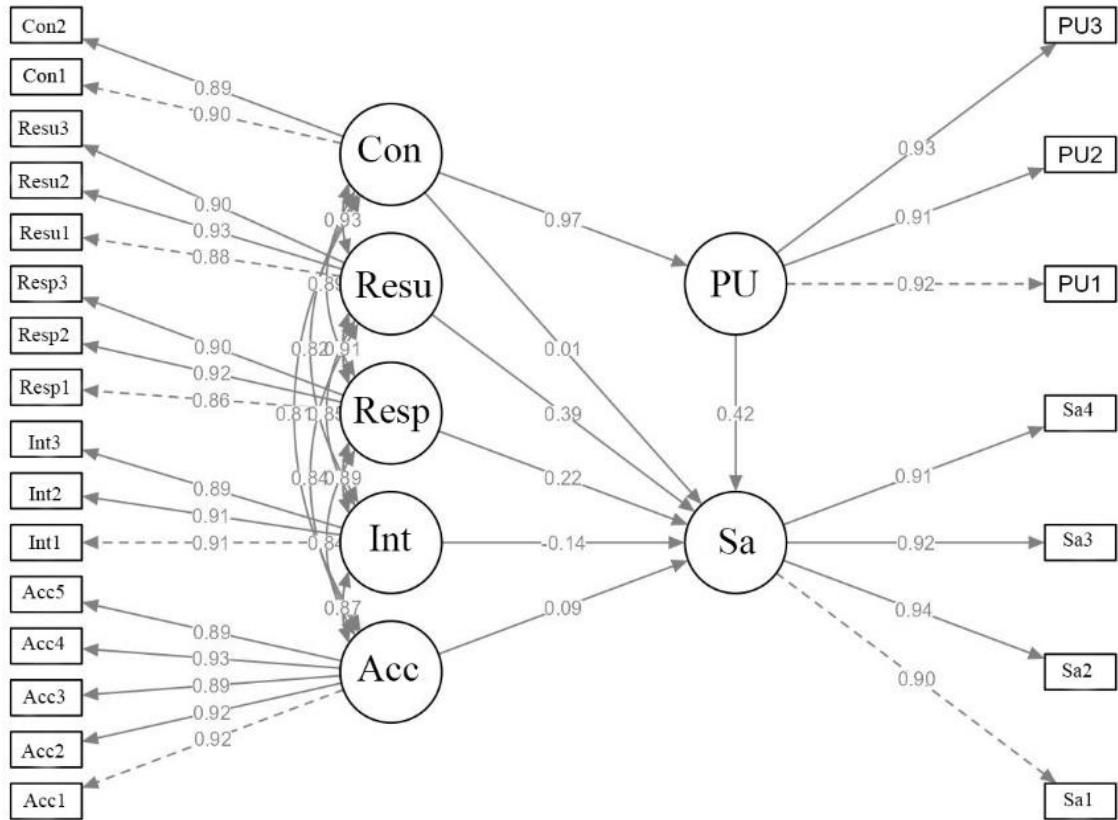
Note: Acc=Access, Int=Interaction, Resp=Response, Resu=Result, Sa=Satisfaction, PU=Perceived Usefulness, Con=Confirmation

### Confirmatory Factor Analysis (CFA) Model Fit

The model fit for CFA was assessed to ensure the adequacy of the CFA model for subsequent analysis. Moreover, the CFA model fit result was shown on Table 8. According to the criteria proposed by Navarro and Foxcroft (2019) the current model fit seemed to reach an acceptable level of fit. This is indicated by values of Comparative Fit Index (CFI) greater than 0.9, Tucker-Lewis Index (TLI) greater than 0.9, and Root Mean Square Error of Approximation (RMSEA) approximately ranging from 0.05 to 0.08, as shown in Table 8.

**Table 8:** CFA Model Fit Indices

| RMSEA 90% CI |       |        |        |        |
|--------------|-------|--------|--------|--------|
| CFI          | TLI   | RMSEA  | Lower  | Upper  |
| 0.958        | 0.949 | 0.0792 | 0.0731 | 0.0853 |


**Table 9:** Confirmatory Factor Analysis Fit Indices and Adjustments

| Fit Index     | Acceptable Criteria | Source                      | Statistical Values             |
|---------------|---------------------|-----------------------------|--------------------------------|
| RMSEA         | $\leq 0.08$         | Navarro and Foxcroft (2019) | 0.080                          |
| CFI           | $\geq 0.90$         | Navarro and Foxcroft (2019) | 0.956                          |
| TLI           | $\geq 0.90$         | Navarro and Foxcroft (2019) | 0.948                          |
| Model Summary |                     |                             | In harmony with empirical data |

The structural model was tested for fit using the following fitting indices. Standardized Root Mean Square Residual (SRMR), RMSEA, CFI, TLI analyses showed the following values for the selected fit indices. The following were the indices' outcomes. TLI = 0.948, RMSEA = 0.080, GFI = 0.976, and SRMR = 0.021. The actual data and the current model fit analysis were in agreement. Seven variables—access, interaction, response, result, perceived usefulness, confirmation, and satisfaction—would be evaluated using these indices.

**Table 10:** Fit Indices Results of the Structural Equation Model (SEM)

| Fit Index     | Acceptable Criteria | Source                    | Statistical Values             |
|---------------|---------------------|---------------------------|--------------------------------|
| GFI           | $\geq 0.80$         | Cho et al. (2020)         | 0.976                          |
| SRMR          | $\leq 0.08$         | Cho et al. (2020)         | 0.021                          |
| RMSEA         | $\leq 0.8$          | MacCallum et al. (1996)   | 0.080                          |
| CFI           | $\geq 0.90$         | Bentler and Bonett (1980) | 0.956                          |
| TLI           | $\geq 0.90$         | Bentler and Bonett (1980) | 0.948                          |
| Model Summary |                     |                           | In harmony with empirical data |



**Figure 2:** SEM Path Diagram of the Study  
Research Hypothesis Testing

**Table 11:** SEM Parameter Estimates

| Dep | Pred | Estimate | SE    | 95% Confidence Intervals |        |         |        |        |
|-----|------|----------|-------|--------------------------|--------|---------|--------|--------|
|     |      |          |       | Lower                    | Upper  | $\beta$ | z      | p      |
| Sa  | Acc  | 0.091    | 0.044 | 0.006                    | 0.176  | 0.092   | 2.097  | 0.036  |
| Sa  | Int  | -0.135   | 0.057 | -0.246                   | -0.024 | -0.135  | -2.388 | 0.017  |
| Sa  | Resp | 0.238    | 0.079 | 0.084                    | 0.392  | 0.223   | 3.029  | 0.002  |
| Sa  | Resu | 0.391    | 0.085 | 0.225                    | 0.557  | 0.394   | 4.612  | < .001 |
| Sa  | PU   | 0.394    | 0.131 | 0.137                    | 0.650  | 0.419   | 3.008  | 0.003  |
| Sa  | Con  | 0.013    | 0.176 | -0.332                   | 0.359  | 0.014   | 0.075  | 0.940  |
| PU  | Con  | 1.003    | 0.036 | 0.933                    | 1.074  | 0.969   | 27.937 | < .001 |

Table 11 displayed the results of testing each of the hypotheses presented in the study. Table 12 presented a summary of the hypothesis testing based on the obtained results.

A P-value of 0.05 or less indicated moderate evidence against the null hypothesis. A P-value between 0.001 and 0.01 indicated moderate to strong evidence, and a P-value less than 0.001 indicates strong to very strong evidence (Goodman, 1999). Using knowledge of corresponding beta coefficients to impute missing correlations (effect sizes) generally produced relatively accurate and precise population effect-size estimated under certain conditions (Peterson & Brown, 2005). Table 12 showed that most of the alternative hypotheses were supported except Ha6.

**Table 12:** Hypothesis Testing Results of the Structural Equation Model

| Hypotheses                                                                                                                     | Standardized<br>Coefficients<br>( $\beta$ ) | z-value   | Result        |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|---------------|
| Ha1: Access to the Superstar Application influences students' satisfaction.                                                    | 0.092                                       | 2.097*    | supported     |
| Ha2: The interaction of the Superstar Application influences students' satisfaction.                                           | -0.135                                      | -2.388*   | supported     |
| Ha3: The response of the Superstar Application influences students' satisfaction.                                              | 0.223                                       | 3.029*    | supported     |
| Ha4: The result of the Superstar Application influences students' satisfaction.                                                | 0.394                                       | 4.612***  | supported     |
| Ha5: Perceived usefulness of Superstar Application influences students' satisfaction towards the use of Superstar Application. | 0.419                                       | 3.008**   | supported     |
| Ha6: Confirmation affects students' satisfaction with the use of the Superstar Application.                                    | 0.014                                       | 0.075     | Not supported |
| Ha7: Confirmation of expectations is related to their perceived usefulness of the Superstar Application.                       | 0.969                                       | 27.937*** | supported     |

\*\*\* =  $P < .001$ , \*\* =  $P < .01$ , \* =  $P < .05$

In addition to testing the hypotheses related to the independent and dependent variables, the study showed that the mediating effect between the Confirmation (Con) and Perceived usefulness (PU) at  $p < 0.001$ . Table 13 showed the hypotheses associated with the mediating variables.

**Table 13:** Mediating Effects of Confirmation (Con) and Satisfaction (S)

| Label | Description                        | Parameter | Estimate | SE | 95% Confidence Intervals |       | $\beta$ | z    | p    |
|-------|------------------------------------|-----------|----------|----|--------------------------|-------|---------|------|------|
|       |                                    |           |          |    | Lower                    | Upper |         |      |      |
| 1     | Con $\Rightarrow$ PU $\Rightarrow$ |           | 0.13     |    |                          |       |         | 3.00 | 0.00 |
| IE1   | Sa                                 | p30*p28   | 0.395    | 1  | 0.137                    | 0.652 | 0.406   | 7    | 3    |

## Discussion

### Research objectives

As shown in the data in Table 12, most of the hypotheses were supported except the H<sub>a6</sub>. Detailed explanation followed.

1) To identify the factors that affect vocational colleges students' satisfaction with the Superstar application.

Access, interaction, response, result, and perceived usefulness had an effect on satisfaction, and confirmation has an effect on perceived usefulness.

There was a statistically significant link between access and satisfaction among pre-school pupils in the target universities, indicated that the alternative hypothesis of hypothesis 1 (Ha1) was supported. With a threshold value of 0.092 and a p-value of 0.036, the standardized path coefficient ( $\beta$ ) indicated a significant association between satisfaction and access.

The alternative hypothesis of hypothesis 2 (Ha2) was supported, suggesting a statistically substantial correlation between interaction and satisfaction with using Superstar Application among pre-school education students at the targeted universities. The standardized path coefficient ( $\beta$ ) was recorded at -0.135 with a p-value of 0.017, indicating a significant association between interaction and satisfaction.

The alternative hypothesis of hypothesis 3 (Ha3) that there was a statistically significant relationship between response to mobile learning and making satisfaction among preschool students in the target universities was supported. The standardized path coefficient ( $\beta$ ) is 0.223 with a p-value of 0.002 which indicated that there was a significant relationship between response and satisfaction.

The alternative hypothesis of hypothesis 4 (Ha4) was supported which reflected that there was a statistically significant correlation between result and satisfaction. The value of standardized path coefficient ( $\beta$ ) was 0.394, and a p-value of <0.001 which indicate that results had a significant correlation with satisfaction.

It was determined that there was a statistically significant link between satisfaction and perceived usefulness by supporting the alternative hypothesis of hypothesis 5 (Ha5). Among pre-school students at the target universities, there was a statistically significant association between satisfaction and perceived usefulness of using Superstar Application. Path Coefficient Standardized According to the standardized path coefficient ( $\beta$ ) of 0.419 and p-value of 0.003, there was a noteworthy association between satisfaction and perceived usefulness.

The alternative hypothesis of hypothesis6 (Ha6) was not supported, signifying the absence of a statistically significant relationship between confirmation and satisfaction regarding the utilization of using Superstar Application among pre-school students at the targeted universities. The standardized path coefficient ( $\beta$ ) is observed to be 0.014 with a p-

value of 0.940, indicating a lack of significant correlation between confirmation and satisfaction.

Since pre-school students at the target universities regard mobile learning to be valuable, the alternative hypothesis of hypothesis 7 (Ha7) was supported, indicating a statistically significant correlation between the two. Perceived usefulness was significantly correlated with confirmation, as indicated by the standardized path coefficient ( $\beta$ ) with a threshold of 0.969 and a p-value of  $<0.001$ .

2) To determine the level of vocational college students' satisfaction towards the Superstar application.

The descriptive analysis's findings showed that all of the study's variables had averages between 0.797 and 0.845 and standard deviations between 0.855 and 0.936. To ensure the precision of the supplementary measurements of the structure matrix, the researchers synthesized the metrics derived from the validated factor analysis in this section. The factor loading values were observed to range from 0.542 to 0.618, the AVE values ranged from 0.797 to 0.845, and the CR ranged from 0.9 to 0.959, all of which align with ideal thresholds. Each square root was greater than the covariances between the non-diagonal elements, thus affirming the discriminant validity of this empirical study. Furthermore, the discriminant validity of the structural equation modeling is also upheld, solidifying the validity of the conclusions drawn.

### **Research results**

The statistical results indicated that satisfaction was directly affected by access, interaction, response, result, and perceived usefulness. Additionally, confirmation had an intuitive effect on satisfaction. Perceived usefulness had the most significant effect on satisfaction, with the results scale ranking second in terms of its effect on satisfaction.

### **Reflection**

These variables suggested that by emphasizing perceived usefulness, educators, administrators, and governmental bodies could enhance student satisfaction with the Superstar Application. Encouraging the utilization of the Superstar Application in the teaching and learning process not only promotes individual study but also enhances teaching effectiveness, reduces redundant workload for instructors, streamlines administrative procedures for university administrators, and provides overall benefits to the university as a whole for policy makers.

### **Congruent/Incongruent**

First, perceived usefulness had the most significant impact on satisfaction. This finding was supported by several studies that had identified a positive correlation between these two constructs (Lee & Kwon, 2011; Maryanto & Kaihatu, 2021; Shin et al., 2011). Additionally, the statistical analysis revealed that the results scale had the second greatest impact on satisfaction. Previous studies had also demonstrated that online resources enhance student learning and promoted greater focus on the material (Gupta & Pathania, 2021). Several studies had shown that response significantly affected satisfaction. For example, Gupta and Pathania (2021) found that students feel content and accomplished, enjoy learning in an online environment, and feel at ease when collaborating with other students. Chandra and Fisher (2009) argued that web-based learning was convenient, accessible, and promoted autonomy in learning, allowing students to learn at their own pace. However, the data suggested that interaction had a relatively small impact on satisfaction. Previous literature had confirmed the relationship between interaction and satisfaction. However, the data suggested that interaction had a relatively small impact on satisfaction. And the data suggested that interaction had a

relatively small impact on satisfaction. This indicated that, for most people, face-to-face interactions were still preferred (Chandra & Fisher, 2009). Finally, validation could also have a positive impact on perceived usefulness. Some researchers were convinced that confirmation enhanced individuals' perceived usefulness(Larsen et al., 2009; Lin & Wang, 2012; Lu et al., 2019).

Overall, this study confirms that access, interaction, response, results, and perceived usefulness contribute to the satisfaction of pre-school students using Superstar Application.

## Recommendations

Based on these two main findings, the recommendation was to emphasize the advantages or benefits of integrating the Superstar Application into the teaching and learning process. Firstly, developers and universities should strive to ensure that students perceive improved performance and enhanced learning efficiency when utilizing the Superstar Application. Additionally, it was crucial to maintain a clear and comprehensible course structure that facilitates students' understanding, thereby fostering the perception that online learning through the Superstar Application could facilitate the achievement of their learning objectives. Moreover, features such as good accessibility from any location, effective interaction with instructors, and robust feedback mechanisms should be prioritized. These aspects collectively enabled the Superstar Application to effectively support students in attaining their online learning objectives.

## References

Al-Emran, M., Arpacı, I., & Salloum, S. A. (2020). An empirical examination of continuous intention to use m-learning: An integrated model. *Education and Information Technologies*, 25 (4), 2899-2918. <https://doi.org/10.1007/s10639-019-10094-2>

Allen, I. E., & Seaman, J. (2008). *Staying the course: Online education in the United States, 2008*. PO Box1238, Newburyport, MA 01950.

Becker, H. J., & Ravitz, J. (1999). The influence of computer and internet use on teachers' pedagogical practices and perceptions. *Journal of research on computing in education*, 31 (4), 356-384.

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. *Psychological bulletin*, 88 (3), 588.

Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. *MIS Quarterly*, 351-370.

Biswas, B., Roy, S. K., & Roy, F. (2020). Students perception of mobile learning during COVID-19 in Bangladesh: . *University student perspective*.

Bordoloi, R., Das, P., & Das, K. (2021). Perception towards online/blended learning at the time of Covid-19 pandemic: an academic analytics in the Indian context. *Asian Association of Open Universities Journal*, 16 (1), 41-60. <https://doi.org/10.1108/AAOUJ-09-2020-0079>

Chandra, V., & Fisher, D. L. (2009). Students' perceptions of a blended web-based learning environment. *Learning Environments Research*, 12, 31-44.

Chang, V., & Fisher, D. (2001). *The validation and application of a new learning environment instrument to evaluate online learning in higher education*. Proceedings of the Australian Association for Research in Education conference 2001,

Chang, V., & Fisher, D. (2003). The validation and application of a new learning environment instrument for online learning in higher education. In *Technology-rich learning environments: A future perspective* (pp. 1-20).

Cho, G., Hwang, H., Sarstedt, M., & Ringle, C. M. (2020). Cutoff criteria for overall model fit indexes in generalized structured component analysis. *Journal of marketing analytics*, 8 (4), 189-202. <https://doi.org/10.1057/s41270-020-00089-1>

Dabholkar, P. A., Shepherd, C. D., & Thorpe, D. I. (2000). A comprehensive framework for service quality: an investigation of critical conceptual and measurement issues through a longitudinal study. *Journal of Retailing*, 76 (2), 139-173. [https://doi.org/10.1016/S0022-4359\(00\)00029-4](https://doi.org/10.1016/S0022-4359(00)00029-4)

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. *MIS Quarterly*, 13 (3), 319-340. <https://doi.org/10.2307/249008>

Demirtaş, İ., Ayyıldız, S., Ayyıldız, B., & Kuş, K. Ç. (2021). Distance education during social isolation: an evaluation of student attitudes and perceptions using the web-based learning environment instrument (WEBLEI). *Anatomy*, 15 (2), 163-170. <https://doi.org/10.2399/ana.21.928791>

Dubey, P., & Sahu, K. K. (2021). Students' perceived benefits, adoption intention and satisfaction to technology-enhanced learning: examining the relationships. *Journal of Research in Innovative Teaching & Learning*, 14 (3), 310-328. <https://doi.org/10.1108/JRIT-01-2021-0008>

Goodman, S. N. (1999). Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy. *Annals of internal medicine*, 130 (12), 995-1004. <https://doi.org/10.7326/0003-4819-130-12-199906150-00008>

Gupta, A., & Pathania, P. (2021). To study the impact of Google Classroom as a platform of learning and collaboration at the teacher education level. *Education and Information Technologies*, 26 (1), 843-857.

Hair Jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. In *Multivariate data analysis* (pp. 785-785).

Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: what is 'enhanced' and how do we know? A critical literature review. *Learning, media technology*, 39 (1), 6-36.

Kumar Basak, S., Wotto, M., & Bélanger, P. (2018). E-learning, M-learning and D-learning: Conceptual definition and comparative analysis. *E-Learning and Digital Media*, 15 (4), 191-216. <https://doi.org/10.1177/2042753018785180>

Larsen, T. J., Sørebø, A. M., & Sørebø, Ø. (2009). The role of task-technology fit as users' motivation to continue information system use. *Computers in Human Behavior*, 25 (3), 778-784.

Lee, Y., & Kwon, O. (2011). Intimacy, familiarity and continuance intention: An extended expectation-confirmation model in web-based services. *Electronic Commerce Research and Applications*, 10 (3), 342-357. <https://doi.org/10.1016/j.elerap.2010.11.005>

Lin, W. S., & Wang, C. H. (2012). Antecedences to continued intentions of adopting e-learning system in blended learning instruction: A contingency framework based on models of information system success and task-technology fit. *Computers & Education*, 58 (1), 88-99.

Loh, X. K., Lee, V. H., Loh, X. M., Tan, G. W., Ooi, K. B., & Dwivedi, Y. K. (2022). The Dark Side of Mobile Learning via Social Media: How Bad Can It Get? *Information Systems Frontiers*, 1-18. <https://doi.org/10.1007/s10796-021-10202-z>

Lu, Y., Wang, B., & Lu, Y. (2019). Understanding key drivers of MOOC satisfaction and continuance intention to use. *Journal of Electronic Commerce Research*, 20 (2).

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. *Psychological methods*, 1 (2), 130.

Maryanto, R. H., & Kaihatu, T. S. (2021). Customer loyalty as an impact of perceived usefulness to grab users, mediated by customer satisfaction and moderated by perceived ease of use. *Binus Business Review*, 12 (1), 31-39.

Navarro, D. J., & Foxcroft, D. R. (2019). Learning statistics with jamovi: A tutorial for psychology students and other beginners (Version 0.70). *Tillgänglig online*: <https://doi.org/http://learnstatswithjamovi.com>

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. *Journal of marketing research*, 17 (4), 460-469.

Patterson, P. G., Johnson, L. W., & Spreng, R. A. (1997). Modeling the determinants of customer satisfaction for business-to-business professional services. *Journal of the Academy of Marketing Science*, 25 (1), 4-17. <https://doi.org/10.1007/BF02894505>

Peterson, R. A., & Brown, S. P. (2005). On the use of beta coefficients in meta-analysis. *Journal of applied psychology*, 90 (1), 175.

Shin, D. H., Shin, Y. J., Choo, H., & Khisu, B. (2011). Smartphones as smart pedagogical tools: Implications for smartphones as u-learning devices. *Computers in Human Behavior*, 27 (6), 2207-2214. <https://doi.org/https://doi.org/10.1016/j.chb.2011.06.017>

Tobin, K. (1998). Qualitative Perceptions of Learning Environments on the World Wide Web. *Learning Environments Research*, 1 (2), 139-162. <https://doi.org/10.1023/A:1009953715583>

Trochim, W., & Donnelly, J. P. (2006). The research methods knowledge base (3. bs.). *Cincinnati, OH: Atomic Dog*.

Tse, D. K., & Wilton, P. C. (1988). Models of consumer satisfaction formation: An extension. *Journal of marketing research*, 25 (2), 204-212.

Wang, Y. Y., Wang, Y. S., Lin, H. H., & Tsai, T. H. (2018). Developing and validating a model for assessing paid mobile learning app success. *Interactive Learning Environments*, 27 (4), 458-477. <https://doi.org/10.1080/10494820.2018.1484773>

Yahaya, W. A. J. W., & Zaini, K. M. (2020). The Effects of a Mobile App with Tutorial Learning Strategy on Anxiety Level of Secondary Students. *TechTrends*, 64 (3), 525-532. <https://doi.org/10.1007/s11528-020-00505-4>

Yeap, J. A., Ramayah, T., & Soto-Acosta, P. (2016). Factors propelling the adoption of m-learning among students in higher education. *Electronic Markets*, 26, 323-338.

Zaiț, A., & Bertea, P. E. (2011). Methods for testing discriminant validity. *Management Marketing Journal*, 9 (2), 217-224.

Zheng, Y., Zhao, K., & Stylianou, A. (2013). The impacts of information quality and system quality on users' continuance intention in information-exchange virtual communities: An empirical investigation. *Decision Support Systems*, 56, 513-524. <https://doi.org/10.1016/j.dss.2012.11.008>