

The Research on Mechanism of Impact for Effectiveness on the System Mechanism of Online Car-hailing Platforms on Users' Continuance Usage Intention

Liu Bingli and Shao Zhen

Dhurakij Pundit University, Thailand

Corresponding Author, E-mail: 344912155@qq.com

Abstract

Based on trust theory and from the perspective of institutional trust, this study examines the impact of various dimensions of the effectiveness of the institutional mechanism of online car-hailing platforms on users' continuance usage intention. It also explores the mediating role of platform trust and the moderating role of trust propensity.

To better understand the statistical relationships among variables, a structural equation model was employed to conduct empirical research on 507 survey questionnaires. The results indicate that the effectiveness of the institutional mechanism of online car-hailing platforms positively affects users' willingness to continue using the service. Platform trust plays a partial mediating role between the effectiveness of the institutional mechanism and users' willingness to continue using the service. Trust propensity positively moderates the strength of the relationship between platform trust and users' willingness to continue using the service. This article aims to deeply study the mechanism of users' trust in ride-hailing platforms, providing targeted management suggestions for platform parties to help them more effectively promote ride-hailing travel services, effectively transform potential users into actual ride-hailing users, and expand the scale of existing market users in a standardized and orderly manner. This will effectively promote and optimize the allocation and integration of social resources, enabling more user groups to enjoy the benefits of intelligent travel.

Keywords: Impact for Effectiveness; System Mechanism; Online Car-hailing Platform Trust; Continuance Usage Intention; Trust Propensity

Introduction

Sharing economy uses the Internet as an information exchange platform and applies emerging digital technologies to empower the management of the transaction process of temporarily transferring the use rights of shared items, thereby improving the utilization rate of shared items, which is highly consistent with the concept of green development in the economic society. Due to these unique characteristics, the sharing economy has occupied an irreplaceable position in the modern market economy system and shown tremendous development space and potential. As the transaction subjects in the sharing economy are strangers, it may lead to the virtuality and uncontrollability of the transaction process, making trust the cornerstone for the sustainable development of the sharing economy. The research conclusion of Hamari et al. (2016) pointed out that trust is a key role in stimulating the willingness to share and is the foundation of the sharing economy. Hawlitschek et al. (2016) proposed in their research that in a network environment, as the supply and demand parties cannot conduct face-to-face transactions, trust can effectively overcome the uncertainty in online transactions and reduce risks.

¹Received: April 3 2023; Revised: April 16 2023; Accepted: April 19 2023

In the service of online ride-hailing, it needs to establish trust relationships among three unfamiliar participating parties in a short time, where the online ride-hailing platform is the bond of trust between supply and demand parties, and the value of the platform's institutional mechanism to user trust becomes prominent. According to Fang Lijie's (2009) research conclusion, the emergence of institutions stems from people's expectation to use institutions to avoid distrust assumptions and activate correction mechanisms to compensate for losses caused by distrust behaviors when they occur, indicating that institutions play an important role in establishing and maintaining trust relationships and regulating people's behaviors. Scholars such as Fang et al. (2014), Lu et al. (2016), and Shao et al. (2019) have all studied the influence mechanism of platform institutional mechanisms on user trust in different application scenarios. Therefore, how to establish and maintain the trust relationship between online ride-hailing users and the platform's institutional mechanisms has important theoretical and practical significance.

From the perspectives of trust theory and institutional trust, this article combines the efficient and convenient characteristics of ride-hailing travel to construct a theoretical model of the effectiveness of ride-hailing platform institutional mechanisms - platform trust - willingness to continue using the service. It proposes and analyzes the following questions: (1) Does the effectiveness of the ride-hailing platform institutional mechanism help enhance users' willingness to continue using the service? (2) Can the effectiveness of the platform mechanism influence users' willingness to continue using the service through the transmission mechanism of platform trust? (3) How does users' trust propensity regulate the path relationship between user trust and willingness to continue using the service?

Research Objective

This paper systematically sorts out and summarizes the concepts, influencing factors, and measurement dimensions of three variables: ride-hailing users' perception of the effectiveness of platform institutional mechanisms, platform trust, and intention to continue using the platform. From the perspective of institutional trust, this paper takes ride-hailing users' perception of the effectiveness of platform institutional mechanisms as the independent variable, platform trust as the mediating variable, and trust propensity as the moderating variable. It analyzes the impact path and mechanism of these variables on users' intention to continue using the platform and constructs the research hypothesis and theoretical model of this paper. This paper designs a questionnaire for ride-hailing users, conducts descriptive statistical analysis on the data, and tests the reliability and validity.

Through an empirical study based on a questionnaire survey of 507 ride-hailing users mainly from Henan Province, China, the following conclusions are drawn:

1. Ride-hailing users' perception of the effectiveness of platform institutional mechanisms effectively enhances their intention to continue using ride-hailing services.
2. Ride-hailing users' perception of the effectiveness of platform institutional mechanisms effectively is an important influencing factor for promoting trust in the platform.
3. Platform trust plays a partial mediating role between ride-hailing users' perception of the effectiveness of platform institutional mechanisms and their intention to continue using the platform.
4. Trust propensity positively moderates the relationship between platform trust and users' continuance usage intention.

Literature Review

The theory of trust mainly focuses on how people establish and maintain trust relationships in uncertain environments, as well as the impact of such relationships on individual behavior. With the advent of e-commerce, trust theory has been introduced into the internet environment. The temporal and spatial span of the internet has expanded the scope of trust interaction objects, and the anonymity of participants has led to the opacity of identity information. These characteristics have led to severe information asymmetry issues in the process of online transactions. Network trust helps reduce risks and uncertainties in internet transactions, making the establishment and maintenance of trust in the internet environment an important and complex task. In the eighth chapter of the book "Social Trust: Theory and Its Application" by Zhai Xuewei and Xue Tianshan (2014), they delve deeply into the conceptual connotation and research model of network trust. In this model, the dimensions of trust mainly describe the various manifestations or factors of network trust, which are the characteristics exhibited by network trust in practice; trust antecedents refer to those factors that play a decisive role before the emergence of network trust, which are the prerequisites or pre-influencing factors for the formation of network trust; trust outcomes refer to the consequences or impacts of trust behavior on user decisions. Their work not only helps to deeply understand the nature of network trust, but also provides a valuable theoretical framework for this study.

First, we review the research on the antecedents of trust in the sharing economy. The literature is examined based on the characteristics of the three participating entities in the sharing economy trust relationship: users, product or service providers, and sharing platforms. From the perspective of users' personal characteristics, the influencing factors of trust mainly include trust propensity, experience, and familiarity. Regarding the impact of trust propensity on trust, Chen and Barnes (2007) found that consumers' initial trust has a significant positive impact on purchase intention, and the level of consumers' trust propensity affects the strength of the relationship between trust antecedents and initial trust. Regarding the impact of experience on trust, Chen and Barnes (2007) found that online shopping experience has a positive impact on purchase intention. Regarding the impact of familiarity on trust, Kim et al. (2008) found that consumer familiarity has a significant impact on platform trust in e-commerce. From the perspective of shared platform enterprises, Kong et al. (2020) selected platform information quality, platform transaction security, and social recommendation to construct a user trust model for the platform, and further studied the impact of trust on the willingness to continue using shared economy products or services. The empirical research results of He Minghua and Liu Xiaoquan (2020) showed that when consumers believe that the shared platform's institutional mechanisms can effectively protect their rights and interests, their trust in the shared economy platform will increase, thereby enhancing their willingness to continue participating in sharing. From the perspective of service providers' characteristics, Yang et al. (2018) selected suppliers' reputation and familiarity, platform security and privacy, platform IT quality, platform characteristics, and interaction to construct a user trust model for the platform and suppliers, and further studied the impact of trust on the purchase intention of shared economy products or services. Based on the perspective of institutional trust, this article selects the two dimensions of structural assurance and situational norms in Mcknight et al.'s (2002) research on institutional trust, and identifies and determines five main forces that drive users' trust in the platform from the perspectives of driver supervision, market pricing, and technological innovation empowerment of online ride-hailing platforms, namely: the effectiveness of driver review, pricing mechanism, technical assurance, emergency assurance, and situational norms. The first four driving factors are regarded as dimensions of structural assurance, aiming to answer how online ride-hailing platform enterprises can effectively maintain and enhance users' willingness to continue using online ride-hailing services and their mechanism of action.

Second, we review the research on trust dimensions. The first category divides the dimensions of trust into ability, integrity, and benevolence for representation and measurement (Mcknight, 2002); the second category divides the dimensions of trust into ability, integrity, benevolence, and predictability for representation and measurement (Gefen & Straub, 2004); the third category measures trust as a whole, with Gefen et al. (2008), Yang et al. (2018), Kong et al. (2020) adopting this approach in their research on network trust. Based on the third measurement method, this article measures platform trust as a whole, reflecting users' recognition of online ride-hailing platform services and behaviors.

Finally, this paper sorts out the impact of trust on users' willingness and behavior to participate, which mainly includes purchase intention (Kim et al., 2008), willingness to continue using (Shao et al., 2019), word-of-mouth (Kong et al., 2020), and specific trust behaviors (Mittendorf, 2017a). This paper focuses on the willingness of users to continue using ride-hailing services, referring to the willingness of users to continue using ride-hailing services in the future after their first use.

Based on the above analysis, this paper mainly uses the theoretical research framework of online trust to deeply explore the core logic of "the effectiveness of ride-hailing platform institutional mechanisms - platform trust - willingness to continue using". This paper comprehensively analyzes how the effectiveness of ride-hailing platform institutional mechanisms can enhance users' willingness to continue using, and how institutional safeguard mechanisms can indirectly influence users' willingness to continue using through platform trust. Finally, it explores how trust tendency regulates the strength of the relationship between platform trust and trust outcomes. The research results of this paper not only have profound academic value for enriching and developing users' willingness to continue using in the context of ride-hailing, but also provide valuable references for the research of other shared economy models. In addition, our research results will also provide regulatory strategies for the government and industry, optimize the ride-hailing platform to improve relevant management systems and optimize service operations, and provide a strong reference for building a smart travel ecological community.

Research Methodology

This article will adopt the questionnaire survey method to collect data. Firstly, it clarifies the connotations of the variables involved in the theoretical model in Chapter 3, expands and customizes the established scales in related fields to meet the research needs of this article. After multiple discussions and revisions, a seven-level Likert scale was successfully developed. Secondly, after the completion of the scale development, a pre-survey was conducted to evaluate and verify the accuracy and validity of the questionnaire items. Through the pre-survey, the expression of individual item semantics was modified to avoid confusion or misunderstanding of the respondents, ensuring that each item could clearly and accurately convey the information of the research variables, forming the final questionnaire. Thirdly, data was collected by distributing the final questionnaire, screening the sample objects, preprocessing and cleaning the questionnaire data, completing descriptive statistical analysis, and testing the reliability and validity of the questionnaire data, providing a solid data basis for subsequent empirical analysis. Finally, this article uses structural equation modeling to verify a series of hypotheses proposed in the model. Mainly using Smart PLS to conduct reliability and validity analysis, structural equation model path analysis, mediation effect analysis, and moderating effect analysis on the collected data set.

During the formal survey, to screen out the target samples for this questionnaire, four target sample screening questions were set to identify eligible survey participants. The first screening question was "How frequently have you used ride-hailing services in the past month?" The second screening question continued with "How far do you usually travel by ride-hailing services?" The third screening question asked "What time of day do you usually choose to use ride-hailing services?" Finally, only by answering the fourth screening question "Which

ride-hailing platform do you use to fill out this questionnaire?" could the respondents proceed to the formal questionnaire. The formal distribution of the questionnaire was conducted from October 2023 to November 2023, lasting two months. Primarily, field research relied on members of the information security society of our unit to conduct random surveys in densely populated areas such as industrial parks, high-speed rail stations, and university campuses in Zhengzhou, Luoyang, and Kaifeng, with on-site completion of questionnaires. Secondly, with the help of my social network, more users who meet the sample requirements and are willing to participate in the survey were identified, thereby enhancing the diversity of research data. To ensure the quality of questionnaire completion, for those introduced by friends to participate in the survey, explanations were provided via email or phone regarding the purpose of the survey and the meaning of each latent variable in the questionnaire, assuring them that all questionnaire information would be kept confidential and only used for the research of this article. Finally, past graduates were entrusted to conduct random surveys on-site in large supermarkets, high-speed rail stations, industrial parks, and other densely populated areas in their workplaces (Beijing, Shenzhen, Shanghai, Changsha, Xi'an, etc.), with on-site completion of questionnaires. To thank the respondents for participating in this survey and compensate for the time taken to complete the questionnaire, a 10-yuan red packet reward incentive was provided to all respondents. Through the above channels, 550 questionnaires were obtained in the formal survey. For the collected questionnaire data, questionnaires with dirty data (all data were 1 or 7) and those completed in less than 5 minutes were deleted, resulting in 507 valid data sets for subsequent analysis.

Research Scope

Research hypothesis

1. Effectiveness of System Mechanism of Online Car-Hailing Platforms and Platform Trust

Online car-hailing users refer to those who, unlike those who hail taxis by waving their hands on the roadside, primarily use mobile apps to book rides on online car-hailing platforms. In the context of online car-hailing, the willingness to continue using refers to users' decision-making willingness to continue using the service based on their own experience, considering various factors such as technology and platform systems.

Institutional trust is a type of trust formed based on relevant institutional guarantees in an online transaction environment, relying on related technological developments. Users tend to choose channels with relatively complete institutional guarantees for transactions during the shopping process. McKnight et al. (2002) believe that structural guarantees are related to trust beliefs and willingness, and users are more willing to believe in a safe operating environment. Pavlou and Gefen (2004) proposed perceived institutional mechanism effectiveness, referring to the degree to which buyers believe that online market institutional mechanisms provide recourse, enforceability, convenience, accessibility, and cost-effectiveness. Combining the characteristics of the online car-hailing context, the effectiveness of the institutional mechanism of the online car-hailing platform in this article refers to users' perception of the effectiveness of the platform's regulatory mechanism, market-driven mechanism, and platform technology guarantee mechanism in protecting the completion of online car-hailing travel transactions and users' rights and interests. It is specifically divided into driver review effectiveness, pricing mechanism effectiveness, technical support effectiveness, and emergency support effectiveness. This refined institutional mechanism helps to more comprehensively understand the formation mechanism and influencing factors of trust, providing more accurate guidance for research and practice.

Driver review effectiveness refers to users' recognition of the online car-hailing platform's driver qualification review standards. Lu et al. (2021) studied the influencing mechanism of users' willingness to continue using shared economy services and found that the certification mechanism of shared platform service providers has a positive impact on users' willingness to continue using. Pricing mechanism effectiveness refers to users' recognition of the reasonableness of the online car-hailing platform's pricing mechanism. Mao et al. (2019) studied Airbnb users' willingness to repurchase and found that trust in the institutional mechanism of the platform has a positive impact on Airbnb users' willingness to repurchase. Technical support effectiveness refers to users' recognition of the online car-hailing platform's technical protection measures (such as algorithm control, data encryption, etc.) in protecting their personal privacy information, payment security, etc. Kim et al. (2008) studied in the field of e-commerce and found that information security measures formulated by online platform companies allow users to believe that the platform has the ability to protect users' private data. Emergency support effectiveness refers to users' recognition of the online car-hailing platform's travel guarantee mechanisms such as trip sharing and emergency rescue. Wada et al. (2010) proposed that emergency support mechanisms play a crucial role in the field of shared travel.

In the context of online car-hailing, when users understand and perceive that the online car-hailing platform implements strict driver review mechanisms, ensuring that every driver has the qualifications to provide safe travel services, it ensures passengers' travel safety from the source; users can query clear and easy-to-understand pricing rules and cost plans on the online car-hailing app, and they can customize their own travel service plans according to their own travel needs before booking; building a mature and stable travel business management solution to provide powerful computing support and data center services for the platform, ensuring that all businesses of the platform operate efficiently, stably, and safely, especially important business information and user privacy and other important information can obtain security protection throughout the entire processing flow, and at the same time, utilize cutting-edge technologies such as big data analysis, artificial intelligence, and the Internet of Things to collect, process, and share various information in real-time, thereby providing users with more comprehensive and efficient emergency rescue services to ensure that they can obtain assistance quickly when facing danger. Based on the above analysis, this article believes that the institutional mechanism of the online car-hailing platform can protect users' personal and property safety, enable them to avoid potential illegal acts by the platform or drivers, and further strengthen users' willingness to use online car-hailing travel. Based on the above analysis, this article proposes the following hypotheses:

H1a: The effectiveness of Driver audits has a positive impact on willingness to continue using.

H1b: The effectiveness of Pricing mechanism has a positive impact on willingness to continue using.

H1c: The effectiveness of Technical support has a positive impact on willingness to continue using.

H1d: The effectiveness of Emergency support has a positive impact on willingness to continue using.

2. The Effectiveness of System Mechanisms and Platform Trust

This paper adopts the definition of trust by Mayer et al. (1995) and draws on the research of Pavlou and Gefen (2004), where platform trust refers to users' trust in online car-hailing platforms. Specifically, it means users' willingness to choose travel services provided by online car-hailing platforms and to bear travel risks based on favorable expectations of the platforms. This can be understood as the degree of users' recognition of the services and behaviors of online car-hailing platforms. Pavlou and Gefen (2004), Shao et al. (2019), and He et al. (2020), Lu et al. (2021) have all established platform trust based on institutional mechanisms in different application scenarios, and the results show that institutional mechanisms positively impact platform trust.

In the context of online car-hailing, users order travel services through online car-hailing apps without directly contacting the drivers. They rely on the platform's review of driver qualifications and vehicle safety to avoid accidents during travel. Chai et al. (2007) proposed that emergency support is an essential mechanism to protect users' personal and property safety from malicious behavior by drivers. The dynamic pricing mechanism was first developed and implemented by Uber to effectively manage the balance between demand and supply of service providers in the online car-hailing market (Chen & Sheldon, 2016; Edelman & Geradin, 2015). Online car-hailing users share personal privacy information, location information, and financial information related to online payments with the platform before they can use the online car-hailing service normally. As users pay more and more attention to privacy issues, their level of trust in the sharing platform depends on their perception of the effectiveness of the platform's technical support mechanisms. He et al. (2018) found that the privacy guarantee mechanism of sharing economy platforms has a positive impact on consumer trust. In summary, the standardized construction of institutional mechanisms by online car-hailing platforms can enhance users' trust in the platform. Therefore, this paper proposes the following hypotheses:

H2a: The effectiveness of Driver audits has a positive impact on platform trust.
H2b: The effectiveness of Pricing mechanism has a positive impact on platform trust.
H2c: The effectiveness of Technical support has a positive impact on platform trust.
H2d: The effectiveness of Emergency support has a positive impact on platform trust.

3. Platform Trust and Continued Usage Intentions

Trust has been identified as a crucial factor influencing individuals' adoption and usage of information and communication technologies (Kirs & Bagchi, 2012; Aldebei et al., 2015; Cheng et al., 2017; Lin et al., 2018). The platform trust referred to in this article specifically refers to users' trust in ride-hailing platforms. Drawing primarily from the definition of trust proposed by Pavlou and Gefen (2004), trust in third-party platforms involves the buyer's belief that the third-party platform establishes and enforces fair rules and procedures in the transactional environment; that the transaction outcomes on its marketplace are competitive, reliable, and honest; and that, if necessary, the platform will provide recourse to address sellers' opportunistic behavior. Third-party platform trust significantly enhances users' willingness to transact in C2C online markets. Hong and Cho (2011) found that consumers' behavior in B2C e-markets largely depends on a trustworthy platform. He et al. (2020), based on online trust theory and social penetration theory, empirically demonstrated that consumers' trust in shared economy platforms enhances their willingness to continue participating in sharing activities.

In the context of ride-hailing, both transacting parties are strangers, and some transactions may be one-time in nature. Before the transaction, the matching is primarily done through the platform's dispatch algorithm, while the transaction process is completed offline by both parties, and the transaction is concluded through online payment. Throughout this process, the platform plays a crucial role in facilitating information exchange and assisting in the completion of travel services for both parties. Therefore, users tend to rely more on third-party platforms for transaction decisions. If users form a strong trust belief in the platform, they are more likely to continue using ride-hailing as their preferred mode of daily transportation. In the fields of e-commerce and the shared economy, numerous studies by other scholars have demonstrated a positive correlation between users' trust in the platform and their intention to continue using it (Mcknight et al., 2002; Pavlou & Gefen, 2004; Kim et al., 2008; Lu et al., 2016; Shao et al., 2019). Based on this analysis, the following hypothesis is proposed:

H3: Platform trust has a positive impact on users' intention to continue using the platform.

4. Mediating effect of platform trust

In the ride-hailing context, trust between users and drivers primarily occurs through information exchange facilitated by the platform. The trust between the two parties largely depends on the improvement of the platform's institutional and mechanism environment. He et

al. (2020) studied the influencing factors and mechanisms of consumer trust in the shared economy context and empirically demonstrated that consumer trust plays a partial mediating role between the perception of the effectiveness of auditing and certification mechanisms and the intention to continue sharing, and it plays a full mediating role between the perception of the effectiveness of privacy guarantee mechanisms and the intention to continue sharing, as well as between the perception of the effectiveness of safety guarantee mechanisms and the intention to continue sharing. Therefore, in the research context of this article, both users and drivers on ride-hailing platforms are unfamiliar individuals, and trust between the two parties is difficult to establish due to the lack of direct interaction. Ride-hailing platform companies should establish and improve their management and regulatory systems to form standardized and reliable institutional mechanisms. The platform should conduct rigorous audits and reviews of drivers and vehicles providing travel services, conduct regular driver assessments and safety training, and ensure that service providers have the capabilities to safeguard users' travel safety. The platform should utilize big data analytics technology to formulate different prices based on different time periods, ensuring that both parties can obtain maximum benefits. Ride-hailing platforms should also use intelligent algorithm control, PKI, and other security technologies to build a safe, trustworthy, and reliable travel ecosystem, ensuring the security of user information. By establishing and improving various institutional mechanisms in travel services, ride-hailing platforms can build users' trust in the platform, which can further enhance users' willingness to continue using ride-hailing services, ultimately achieving sustainable development of the ride-hailing platform. Based on this analysis, the following hypotheses are proposed:

H4a: Platform trust mediates between the effectiveness of driver audits and the intention to continue using the platform.

H4b: Platform trust mediates between the effectiveness of pricing mechanisms and the intention to continue using the platform.

H4c: Platform trust mediates between the effectiveness of technical support and the intention to continue using the platform.

H4d: Platform trust mediates between the effectiveness of emergency support and the intention to continue using the platform.

5. Moderating Effect of Trust Tendency

McKnight et al. (1995) pointed out that trust tendency refers to an individual's confidence in human nature and a tendency to trust others. This tendency, as a personality trait, can moderate the impact of credible factors on trust formation. His research suggested that the role of trust tendency is particularly significant in situations where cue information is unclear or unpredictable. Cheung and Lee (2006) stated that trust tendency is a personality trait based on experience and culture, and individuals with a high trust tendency are more likely to believe in online transaction environments. Wang et al. (2020) examined the moderating role of trust tendency in their study and found that among tourists with different trust tendencies, there are differentiated effects of tourism destination social responsibility on tourism destination brand assets and reputation.

In the context of ride-hailing services, when a ride-hailing platform exhibits high service quality, robust privacy protection measures, and emergency travel safeguards, it reshapes users' trust perception of the platform and creates a positive expectation towards it. This positive perception makes users more likely to believe that the platform will actively fulfill its social, ethical, and legal responsibilities during the travel process, leading to higher trust and evaluation of the platform. Consequently, users are more likely to develop a sense of identity towards the ride-hailing platform and its services. For users with a high trust tendency, they are more inclined to trust the platform and its level of commitment, which enhances their trust perception and makes them more likely to prioritize ride-hailing when making travel decisions. This, in turn, increases the impact of user trust on their intention to continue using the platform. Conversely, for users with a low trust tendency, their trust perception towards the ride-hailing platform may decrease, causing them to reconsider whether to choose the

platform's services or opt for other types of transportation, thereby reducing the impact of user trust on their intention to continue using the platform. Based on the above analysis, this article proposes the following hypothesis:

H5: Trust tendency positively moderates the relationship between user trust in the platform and their intention to continue using it.

Drawing from trust theory and from the perspective of institutional trust, this article analyzes users' perception of the effectiveness of ride-hailing platform institutional mechanisms and the mechanism by which platform trust affects users' intention to continue using the service. It incorporates the variable of user trust tendency as a moderating variable into the research model to observe its moderating effect on the relationship between user trust in the platform and their intention to continue using it. Based on the hypothetical deduction analysis presented in this article, the theoretical model is illustrated in Figure 1.

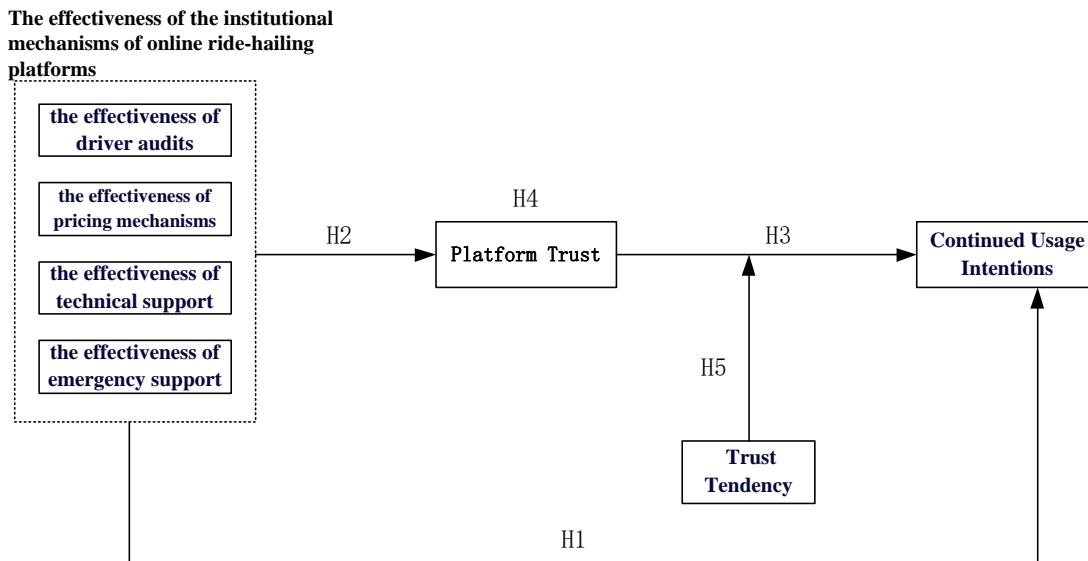


Figure 1 Theoretical Model

Research Design

This study collected data through a questionnaire survey. The survey was conducted over a period of two months, from October 2023 to November 2023. The survey was primarily conducted in densely populated areas such as industrial parks, high-speed rail stations, and university campuses in Zhengzhou, Luoyang, Beijing, and Shanghai, China, through random on-site surveys where participants filled out the questionnaire on the spot. To ensure that the questionnaire targeted the desired sample, participants were required to answer four screening questions truthfully and objectively before proceeding to the main questionnaire. A total of 550 questionnaires were collected during the survey. After excluding questionnaires that did not meet the criteria of ride-hailing users, those with all items marked with the same value, and those completed in less than 5 minutes, a total of 507 valid data samples were obtained.

Variable Measurement. This study draws upon authoritative literature on the effectiveness of driver vetting, pricing mechanisms, technical support, emergency response, platform trust, trust propensity, and willingness to continue using ride-hailing services. Minor adjustments were made based on the context of ride-hailing services. Specifically, the measurement of driver vetting effectiveness is adapted from the scale developed by Shao et al. (2019), which consists of four items. The measurement of pricing mechanism effectiveness is also adapted from Shao et al. (2019), with four items. The measurement of technical support effectiveness is adapted from the scale developed by McKnight et al. (2002), containing three

items. The measurement of emergency response effectiveness is based on the scale developed by He et al. (2020), with three items. Platform trust is measured using the consumer trust scale developed by Kim et al. (2008), tailored to the context of ride-hailing services and containing three items. Willingness to continue using is measured using the Information System Continuance Intention Scale developed by Bhattacherjee (2001), tailored for ride-hailing services and consisting of three items. Trust propensity is measured using the scale developed by Kim et al. (2008), which includes four items.

In addition to the influence of platform trust, other factors also affect users' willingness to continue using ride-hailing services. To ensure more accurate empirical results, it is necessary to control for these other influencing factors. Based on existing research, this study selects users' age, occupation, gender, educational background, income, and travel distance as control variables to improve the fit of the model.

Empirical analysis

1. Descriptive Statistical Analysis

Using the valid data collected from this survey, descriptive statistical analysis was performed on the personal characteristics of respondents, such as gender, age, occupation, and education level, as well as their ride-hailing usage experience (as shown in Table 1). It can be seen that the age of the respondents is mainly distributed between 18 and 40 years old. The educational level is mainly concentrated among undergraduate and graduate students. The occupational distribution is primarily composed of university students and young employees from enterprises. This group has a strong ability to accept new things, and a relatively high proportion of them need to go out for communication or business negotiation in their studies or work, which meets the needs of the survey sample. Therefore, the data reliability of the completed questionnaires is high.

Table 1: Descriptive Statistical Analysis of the Sample

Basic Information	Specific Category	Frequency	Percentage/%
Gender	Male	267	52.7%
	Female	240	47.3%
Age	18-25 years old	188	37.1%
	26-30 years old	62	12.2%
Occupation	31-40 years old	147	29.0%
	41-50 years old	82	16.2%
Education Level	51 years old and above	28	5.5%
	Government and public institution employees	137	27.0%
Travel Distance	Corporate employees	128	25.2%
	Student	130	25.6%
Frequency of Ride-Hailing Usage (within 1 month)	Freelancers	34	6.7%
	Others	78	15.4%
Frequency of Ride-Hailing Usage (within 1 month)	High school and below	14	2.8%
	Junior college	25	4.9%
Frequency of Ride-Hailing Usage (within 1 month)	Bachelor's degree	327	64.5%
	Master's degree and above	141	27.8%
Frequency of Ride-Hailing Usage (within 1 month)	10 kilometers and below	281	55.4%
	11-20 kilometers	157	31.0%
Frequency of Ride-Hailing Usage (within 1 month)	21-30 kilometers	47	9.3%
	More than 31 kilometers	22	4.3%
Frequency of Ride-Hailing Usage (within 1 month)	1-4 times	364	71.8%
	5-8 times	83	16.4%
Frequency of Ride-Hailing Usage (within 1 month)	9-12 times	38	7.5%
	More than 13 times	22	4.3%

2. Reliability and Validity Analysis

The questionnaire in this study was tested using a Likert 7-point scale, where 1 represents "strongly disagree" and 7 represents "strongly agree". The reliability and validity test of the structural equation model was completed in Smart PLS, with driver verification effectiveness, pricing mechanism effectiveness, technical support effectiveness, and emergency support effectiveness as independent variables, platform trust as a mediator variable, trust tendency as a moderator variable, and willingness to continue using as the dependent variable. The PLS-SEM model of this study was constructed. The PLS-SEM Algorithm was used to calculate the relevant indicators of the measurement model fit. The Cronbach's Alpha coefficient indicators of internal consistency reliability for each scale were all greater than 0.80, and the Composite Reliability was all greater than 0.90 (as shown in Table 2), indicating that the overall questionnaire reliability statistics are good. The scale design mainly referred to mature scales in management science and has high content validity. The standardized factor loadings should be greater than 0.5; Composite Reliability should be greater than 0.7; and the Average Variance Extracted (AVE) should be greater than 0.5, indicating that the convergent validity of each variable is high. At the same time, a rigorous AVE method was used to assess discriminant validity, and the square root of each variable's AVE was greater than the correlation coefficient between variables (as shown in table 3), indicating that the research variables have high discriminant validity.

Table 2: Reliability and Convergent Validity Statistical Indicators

Variable	Item	Factor Loading	Cronbach's Alpha	CR	AVE
Driver audits Effectiveness (DA)	DA1	0.880	0.901	0.931	0.771
	DA2	0.888			
	DA3	0.860			
	DA4	0.884			
Pricing Mechanism Effectiveness (PM)	PM1	0.876	0.894	0.926	0.759
	PM2	0.884			
	PM3	0.846			
	PM4	0.877			
Technical Support Effectiveness (TS)	TS1	0.875	0.855	0.912	0.776
	TS2	0.888			
	TS3	0.879			
Emergency Support Effectiveness (ES)	ES1	0.906	0.869	0.920	0.793
	ES2	0.886			
	ES3	0.879			
Trust Tendency (TT)	TT1	0.899	0.892	0.925	0.755
	TT2	0.862			
	TT3	0.848			
	TT4	0.865			
Platform Trust (PT)	PT1	0.901	0.851	0.910	0.771
	PT2	0.870			
	PT3	0.862			
Willingness to continue using (CU)	CU1	0.911	0.882	0.927	0.808
	CU2	0.898			
	CU3	0.889			

Considering the possibility of common method bias resulting from the use of self-report data collection, following the suggestion of Zhou and Long (2004), all latent variable items were loaded onto a single latent variable. The common method bias was tested through confirmatory factor analysis with a single factor model, which exhibited poor fit indices (chi/df=7.287, RMSEA=0.80, CFI=0.672, TLI=0.565, IFI=0.573). Furthermore, according to the theoretical model, the items of the seven latent variables were loaded onto their corresponding latent variables, and the model fit indices were satisfactory through confirmatory factor analysis (chi/df=1.373, RMSEA=0.027, CFI=0.987, TLI=0.985, IFI=0.987). This confirmed that there was no serious common method bias in this study. Additionally, to avoid the influence of multicollinearity among variables on statistical test results, a test for multicollinearity was conducted with the intention to continue using as the dependent variable and the other variables as independent variables. The variance inflation factor (VIF) values for all variables were less than 5, indicating a low probability of multicollinearity among the variables.

Table 3: Correlation Coefficients and Square Roots of AVE for Variables

Variable	AVE	DA	PM	TS	ES	TT	PT	CU
DA	0.771	0.878						
PM	0.759	.674**	0.871					
TS	0.776	.673**	.705**	0.881				
ES	0.793	.705**	.715**	.742**	0.891			
TT	0.755	.621**	.663**	.687**	.650**	0.869		
PT	0.771	.674**	.670**	.699**	.723**	.732**	0.878	
CU	0.808	.692**	.711**	.703**	.732**	.739**	.758**	0.899

Note: The lower triangle of the matrix represents Pearson correlation coefficients, and ** indicates significant correlation at the 0.01 level (t two-tailed). The values on the diagonal are the square roots of AVE. Abbreviations: DA for Driver Audit Effectiveness, PM for Pricing Mechanism Effectiveness, TS for Technical Support Effectiveness, ES for Emergency Support Effectiveness, TT for Trust Tendency, PT for Platform Trust, and CU for Willingness to Continue Using.

Research Findings

Based on the constructed research model, the reliability and validity of the collected questionnaire data were analyzed. The recovered questionnaire data met various standards and requirements for structural equation modeling (SEM) analysis, satisfying the conditions for conducting SEM analysis. Since Partial Least Squares (PLS) is more suitable for theoretical exploration, requires a smaller sample size, and can produce better results when there is multicollinearity among variables, Smart PLS was used to construct the SEM and establish the path relationships among variables, thereby testing the significance of relationships among latent variables.

1. Main Effect Test

First, using driver audit effectiveness, pricing mechanism effectiveness, technical support effectiveness, and emergency support effectiveness as independent variables, platform trust as a mediator variable, and users' intention to continue using as the dependent variable, with gender, age, occupation, education level, monthly income, and travel distance as control variables, a PLS-SEM model was constructed. The predictive ability of the theory model was evaluated using the PLS-SEM Algorithm. Driver audit effectiveness, pricing mechanism effectiveness, technical support effectiveness, emergency support effectiveness, and contextual norms explained 68.2% of the variance in platform trust. Driver audit effectiveness, pricing mechanism effectiveness, technical support effectiveness, emergency support effectiveness, contextual norms, platform trust, and selected control variables explained 73.9% of the variance in the willingness to continue using. Subsequently, the Bootstrapping method was

used to calculate the path coefficients, and the significance of the path relationships was judged based on T-values (as shown in Table 4).

Table 4: Results of Path Coefficient Analysis for the Main Model's Structural Equation

Structural Model Path	Path Coefficient	T-Value	Variance Explained (R-squared)
DA→PT	0.188***	3.207	
PM→PT	0.262***	5.350	
TS→PT	0.189***	3.435	0.682
ES→PT	0.271***	4.455	
PT→CU	0.385***	7.667	
DA→CU	0.113**	2.150	
PM→CU	0.186***	2.784	
TS→CU	0.138***	2.866	
ES→CU	0.159**	2.419	
Gender→CU	-0.063	1.240	0.739
Age→CU	0.009	0.396	
Occupation→CU	-0.017	0.650	
Education Level→CU	0.000	0.005	
Monthly income→CU	0.028	0.819	
Travel Distance→CU	-0.029	1.125	

Note: P represents significance, *** indicates $P<0.01$, ** indicates $P<0.05$, and * indicates $P<0.1$. DA for Driver Audit Effectiveness, PM for Pricing Mechanism Effectiveness, TS for Technical Support Effectiveness, ES for Emergency Support Effectiveness, TT for Trust Tendency, PT for Platform Trust, and CU for Willingness to Continue Using.

From Table 4, it can be observed that at a significance level of 10%, there are a total of 9 significant path coefficients. Driver audit effectiveness, pricing mechanism effectiveness, technical support effectiveness, and emergency support effectiveness have a significantly positive correlation with the intention to continue using, confirming the validity of hypotheses H1a, H1b, H1c, and H1d. Additionally, driver audit effectiveness, pricing mechanism effectiveness, technical support effectiveness, and emergency support effectiveness also exhibit a significantly positive correlation with platform trust, supporting hypotheses H2a, H2b, H2c, and H2d. Platform trust is significantly positively correlated with the intention to continue using, verifying hypothesis H3. When considering gender, age, occupation, educational background, and income as control variables for the intention to continue using and analyzing their impact, the path coefficients are not significant, indicating that they do not have an influence on the dependent variable.

2. Mediation Effect Test

Using Smart PLS's bootstrapping method to estimate the mediation effect values and Bootstrap 95% confidence intervals, if the confidence interval contains 0, it indicates that the mediation effect is not significant. If it does not contain 0, it means that the mediation effect is significant. The size of the mediation effect is judged by comparing the VAF values. The specific results are shown in Table 5. In the path of driver audit effectiveness → platform trust → intention to continue using, the bias-corrected bootstrap confidence interval at a 95% confidence level is (0.035, 0.116), which does not contain 0. This suggests that user platform trust has a significant mediation effect between driver audit effectiveness and users' intention

to continue using, confirming the validity of hypothesis H4a. Since the VAF value equals 38.71%, which falls between 20% and 80%, it indicates that platform trust partially mediates the relationship between driver audit effectiveness and users' intention to continue using. Similarly, it can be inferred that platform trust partially mediates the relationships between pricing mechanism effectiveness, technical support effectiveness, emergency support effectiveness, and users' intention to continue using, supporting hypotheses H4a, H4b, H4c, and H4d.

Table 5: Analysis of Mediation Effect of Platform Trust

Independent Variable	Mediator Variable	Dependent Variable	Effect Size	Standard Error	Confidence Interval (95%)		VAF	Mediation Effect
					Lower Bound	Upper Bound		
DA	PT	CU	0.072	0.024	0.035	0.116	38.71%	Partial Mediation
PM	PT	CU	0.101	0.021	0.069	0.139	35.19%	Partial Mediation
TS	PT	CU	0.073	0.026	0.036	0.119	34.60%	Partial Mediation
ES	PT	CU	0.104	0.027	0.066	0.154	39.39%	Partial Mediation

Note: DA for Driver Audit Effectiveness, PM for Pricing Mechanism Effectiveness, TS for Technical Support Effectiveness, ES for Emergency Support Effectiveness, TT for Trust Tendency, PT for Platform Trust, and CU for Willingness to Continue Using.

3. Moderating Effect Test

In this section, the moderating effect of trust propensity is analyzed using the Bootstrapping method in Smart PLS. With platform trust as the independent variable, intention to continue using as the dependent variable, and trust propensity as the moderating variable, gender, age, occupation, education level, monthly income, and travel distance are included as control variables. A Process research model is constructed in Smart PLS.

First, Path Analysis is employed to assess the predictive ability of the trust propensity theoretical model. The model explains 71.1% of the variance in users' intention to continue using, considering platform trust, trust propensity, and control variables. Subsequently, the moderating effect of trust propensity is tested through the Bootstrapping analysis method. The interaction coefficient between trust propensity and platform trust is found to be significant ($\beta=0.107$, $t=2.859$, $CI=[0.034, 0.155]$). The interaction coefficient is significant, and the confidence interval includes 0, indicating that the moderating effect of trust propensity on the relationship between platform trust and intention to continue using is established, supporting hypothesis H5. When users have a low level of trust propensity (M-1SD), the effect of platform trust on the intention to continue using is not significant ($\beta=-0.022$, $t=0.320$, $CI=[-0.126, 0.197]$). However, for users with a high level of trust propensity (M+1SD), platform trust has a significant positive effect on the intention to continue using ($\beta=0.250$, $t=3.579$, $CI=[0.148, 0.372]$). This effect gradually increases, suggesting that as users' trust propensity increases, the impact of platform trust on the intention to continue using also gradually rises. This demonstrates that trust propensity positively moderates the relationship between platform trust and intention to continue using.

Discussion

Based on trust theory and using structural equation modeling, this study explores the relationship between users' trust in the platform and their intention to continue using it from the perspective of institutional trust. It constructs a research framework that examines the effectiveness of the ride-hailing platform's institutional mechanisms, users' trust in the platform, and their intention to continue using it. The study also investigates the transmission mechanism of users' trust in the platform and the boundary role of trust propensity.

The empirical results show that, first, ride-hailing users' perception of the effectiveness of the platform's institutional mechanisms has a significant positive impact on their intention to continue using. Second, platform trust partially mediates the relationship between users' perception of the effectiveness of the platform's institutional mechanisms and their intention to continue using. Third, trust propensity positively moderates the strength of the relationship between users' trust in the platform and their intention to continue using. The higher the value of users' trust propensity, the stronger the promoting effect of platform trust on their intention to continue using.

This study explores the influencing factors of ride-hailing users' institutional trust in the platform. Combining research findings on institutional trust and following the research vein of antecedents-trust-outcomes, it primarily focuses on the effectiveness of ride-hailing platform institutional mechanisms. It delves into the influencing factors of ride-hailing users' trust in the platform, ultimately selecting four dimensions of perception of the effectiveness of the platform's institutional mechanisms: driver audit effectiveness, pricing mechanism effectiveness, technical support effectiveness, and emergency support effectiveness. These dimensions cover areas such as the platform's driver audit and certification mechanism, pricing rules in market-driven mechanisms, and technology-enabled ride-hailing management. Combining the context of ride-hailing, corresponding measurement indicators are designed to construct a relationship of institutional trust between ride-hailing users and the platform. The statistical analysis of the questionnaire survey shows that the scale has good reliability and validity, providing a theoretical reference for research on institutional trust in ride-hailing platforms.

Recommendations

Ride-hailing platform companies should establish and improve management systems and safeguard mechanisms, build a safe, trustworthy, and reliable smart travel ecological environment, and build a long-term and effective trust relationship between users and the platform based on the institutional mechanism of the ride-hailing platform. This is to achieve a stable user base for the ride-hailing platform. The results of this study indicate that the institutional mechanism of the ride-hailing platform has a significant positive impact on users' willingness to continue using the service, and platform trust plays a partial mediating role between the effectiveness of the four dimensions of the ride-hailing platform's institutional mechanism and users' willingness to continue sharing. Ride-hailing platform companies should further improve and optimize the construction of their institutional mechanisms, especially in areas that users highly value, such as driver review mechanisms, market pricing mechanisms, technical support mechanisms, and emergency support mechanisms. Regular assessments of the implementation effects of these platform mechanisms should also be conducted.

In recent years, various ride-hailing platforms have been revealed to have issues in their operational management, such as unreasonable platform commissions, the collection of irrelevant user data through the platform's own apps, short-term promotional activities such as red envelopes and coupons, unclear responsibility determination in accidents, and regulatory mechanism issues related to accidental injuries during rides. These issues highlight the pain points and difficulties in ride-hailing business management. Such behaviors will affect users' usage behavior and willingness. Therefore, ride-hailing platforms should establish long-term, sound, and standardized institutional safeguard mechanisms, combine technological means to

enhance the management efficiency of the platform's business, establish user institutional trust, suppress travel risk perception, enhance travel perceived benefits, and actively promote users' willingness to continue using ride-hailing services.

In terms of the implementation of institutional norms, the following specific measures should be taken: Firstly, it is necessary to gradually improve the driver certification system of ride-hailing platforms. Besides the commonly used review mechanisms such as driver background and qualification checks, consistency checks between people and vehicles, and face recognition before accepting orders, the platform should also innovate technological controls, scientifically assign orders to avoid fatigue driving, respect the labor rights and interests of part-time workers, reasonably extract commissions from the platform, and ensure that drivers receive reasonable returns for their labor efforts. Enhancing the happiness and sense of belonging of practitioners is an important prerequisite for the normal operation of the platform's business.

Secondly, in terms of market dynamic pricing mechanisms, the platform can design reasonable, dynamic, and transparent pricing schemes based on factors such as travel time, mileage, vehicle type, and additional service fees (mainly including vehicle dispatching during peak hours, cross-city travel or nighttime travel, etc.). Pricing schemes can also be formulated based on different user groups' requirements in terms of time or cost. Regardless of the type of pricing scheme implemented, it must adhere to the principles of transparency and fairness, be implemented in accordance with regulations, and protect the rights and interests of both supply and demand.

Thirdly, by utilizing Internet thinking, focusing on user privacy security, payment security, and emergency support security, it is necessary to establish a technical support system and an emergency early warning support system. This can be achieved through technological innovation to empower the ride-hailing platform's travel business management and operations.

Finally, it is necessary to strengthen the construction of ride-hailing travel business process norms, monitor the behavior of drivers and users participating in ride-hailing travel services from the platform end, and protect their legitimate rights and interests. At the same time, the government or industry authorities should also guide and urge ride-hailing platform companies to establish and improve monitoring systems, especially those closely related to user rights and interests. This will strengthen the supervision of ride-hailing platforms' performance of their duties and the protection of users' various rights and interests. By doing so, a new governance structure for multi-stakeholder collaboration and coordination can be formed, Rebuild users' trust in online ride-hailing platforms, thereby promoting their stable, healthy, and high-quality development, and creating a trustworthy smart travel ecological environment for users.

Limitations

There are also some limitations to this study that need to be further discussed in future research. Firstly, this study uses cross-sectional data from a single time point. Future research could use longitudinal data analysis methods across multiple time points to more accurately reveal the path relationships between variables. Secondly, this study introduces platform trust as a mediating variable to explore the impact mechanism of users' perception of the effectiveness of ride-hailing platform institutional mechanisms on their willingness to continue using the service from the perspective of institutional trust. Future research could explore the role of platform trust in the context of ride-hailing from other theoretical perspectives. Finally, this study selects trust tendency as a moderating variable to explore the impact of platform trust on the relationship between sustained usage intention from the perspective of user individual characteristics.

References

Aldebei, Mutaz, M., Ashouri, Mohamed,&Ibrahem, et al. (2015). Consumer attitudes towards online shopping the effects of trust, perceived benefits, and perceived web quality. *Internet Research: Electronic Networking Applications and Policy*, 25 (5), 707-+.

Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. *Mis Quarterly*, 25 (3), 351-370.

Chen, M. K. . (2016). *Dynamic Pricing in a Labor Market: Surge Pricing and Flexible Work on the Uber Platform*. the 2016 ACM Conference.ACM.

Chen, Y., Barnes, S(2007). Initial trust and online buyer behavior. *Industrial Management & Data Systems*,107 (107),21-36.

Cheng, X.,Fu,S.,&De Vreede, G. J. (2017). Understanding trust influencing factors in social media communication: a qualitative study. *International Journal of Information Management*, 37 (2), 25-35.

Cheung, C. M., & Lee, M. K. (2006). Understanding consumer trust in Internet shopping: A multidisciplinary approach. *Journal of the American society for Information Science and Technology*, 57 (4), 479-492.

Edelman, B. G.,Geradin, D. (2015). *Efficiencies and regulatory shortcuts: how should we regulate companies like airbnb and uber?*. SSRN Electronic Journal.

Fang Lijie (2009). The Formation Process of Institutional Trust: Taking the New Rural Cooperative Medical System as an Example. *Sociological Studies*, 24 (2), 130-148. [in Chinese]

Fang, Y., Qureshi, I., Sun, H., McCole, P., Ramsey, E., & Lim, K. H. (2014). Trust, Satisfaction and Online Repurchase Intention: The Moderating Role of Perceived Effectiveness of E-commerce Institutional Mechanisms. *MIS Quarterly* , 38 (2), 407-427.

Gefen, D., &Straub, D. W. . (2004). Consumer trust in B2C e-commerce and the importance of social presence: experiments in e-products and e-services. *Omega*, 32 (6), 407-424.

Gefen, D., Benbasat, I., & Pavlou, P. (2008). A research agenda for trust in online environments. *Journal of Management Information Systems*, 24 (4), 275-286.

Hamari, J. , Sjklint, M. , & Ukkonen, A. . (2016). The sharing economy: why people participate in collaborative consumption. *Journal of the Association for Information Science and Technology*, 67 (9),2047-2059.

Hawlitschek, F. ,Teubner, T.,Weinhardt, C.(2016). Trust in the sharing economy. *Swiss Journal of Business Research & Practice*, 70 (1), 26-44.

He Minghua, Liu Xiaoquan (2020). Formation Mechanism and Influence Mechanism of Consumer Trust in Sharing Economy. *China Business and Market*, 34 (02), 69-82.[in Chinese]

Hong, I. B.,&Cho, H. (2011). The impact of consumer trust on attitudinal loyalty and purchase intentions in b2c e-marketplaces: intermediary trust vs. seller trust. *International Journal of Information Management*, 31 (5), 469-479.

Kim, D. J. , Ferrin, D. L. , & Rao, H. R. . (2008). A trust-based consumer decision-making model in electronic commerce: the role of trust, perceived risk, and their antecedents. *Decision Support Systems*, 44 (2),544-564.

Kong, Y., Wang, Y., Hajli, S., & Featherman, M. (2020). In sharing economy we trust: Examining the effect of social and technical enablers on millennials' trust in sharing commerce. *Computers in human behavior*, 108, 105993.

Lu, B. , Zeng, Q. , & Fan, W. (2016). Examining macro-sources of institution-based trust in social commerce marketplaces: an empirical study. *Electronic Commerce Research and Applications*, 116-131.

Mao, E., Jones, M. F., Li, M., Wei, W. ,& Lyu, J. (2019). Sleeping in a stranger's home: a trust formation model for airbnb. *Journal of Hospitality and Tourism Management*, 42, 67-76.

Mayer, R. C. , Davis, J. H. , & Schoorman, F. D. . (1995). An integrative model of organizational trust. *The Academy of Management Review*, 20 (3), 709-734.

Mcknight, D. H. , Choudhury, V. , & Kacmar, C. . (2002). Developing and validating trust measures for e-commerce: an integrative typology. *Information Systems Research*, 13 (3), 344-359.

Mcknight, D. H. , Cummings, L. L. , & Chervany, N. L. . (1995). *Initial trust formation in new organisational relationships*. The Academy of Management Review, 23.

Mittendorf, C. (2017)a. *The implications of trust in the sharing economy—an empirical analysis of Uber*. Proceedings of the 50th Hawaii International Conference on System Sciences.<http://hdl.handle.net/10125/41866>

Pavlou, P. A. , & Gefen, D.(2004). Building effective online marketplaces with institution-based trust. *Information Systems Research*, 15 (1), 37-59.

Shao, Z. and Yin, H. (2019). Building customers' trust in the ridesharing platform with institutional mechanisms: An empirical study in China. *Internet Research*, 29 (5), 1040-1063.

Wada, T., Yamane, A., Ohtsuki, K., & Okada, H. (2010). A novel emergency rescue urgent communications for sharing evacuation support information in panic-type disasters. *IEICE transactions on communications*, 93 (12), 3429-3437.

Wang Chunyang, Li Wenjun, Feng Zhijing (2020). The Impact of Tourism Destination Social Responsibility on Tourism Destination Brand Equity-Mediation and Moderation Mechanisms. *Tourism Tribune*, 35 (6), 109-124.

Yang, S. B., Lee, K., Lee, H., & Koo, C.(2018). In Airbnb we trust: Understanding consumers' trust-attachment building mechanisms in the sharing economy. *International Journal of Hospitality Management*, 83, 198-209

Zhai Xuewei, Xue Tianshan (2014). *Theory and Application of Social Trust*. China Renmin University Press. [in Chinese]

Zhou Hao, Long Lirong. (2004). Statistical testing and control methods for common method biases. *Advances in Psychological Science*, 12 (6), 942-942.[in Chinese]