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EFFECTS OF CHEST X-RAY IMAGE SIZE ON MACHINE LEARNING PROCESSES AND
THE EFFECTIVENESS OF CORONAVIRUS DISEASE 2019 PREDICTION MODELS

Kriengsak Yothapakdeel* Tanunchai Boonnuk® Sarawoot Charoenkhun®

Abstract

This research aimed to demonstrate how the differences in chest X-ray image sizes
affect the execution time and efficiency of machine learning processes. The samples consisted
of 299x299-pixel 15,153 chest X-ray images obtained from Kaggle.com. The experiment
involved two approaches: reducing the image size to 20x20 and 30x30 pixels and increasing
the image size to 800x800 and 1,024x1,024 pixels. The Random Forest algorithm was applied
to build machine leaming models for performance assessment. Two indicators, namely
accuracy and execution time, were employed for the efficiency comparison. The findings
revealed that the original 299x299 pixel chest X-ray images achieved an accuracy rate of
86.26% with an execution time of 9.17 minutes. For the X-ray images with the reduced sizes of
20x20 pixels and 30x30 pixels, the accuracy rates were 84.83% and 85.60%, and the execution
times of 5.51 and 8.09 minutes. Conversely, enlarging the images to 800x800 and 1,024x1,024
pixels resulted in accuracy rates of 86.65% and 86.70%, with execution times of 28.56 and
31.06 minutes, respectively. This study proved that the execution time of machine learning
processes and the effectiveness of image classification varied according to the size of chest

X-ray images.
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Naive Bayes 7.30 73.43% 64.09% 59.05%  61.42%
Support Vector Machine 14.02 71.04% 55.10%  52.03%  53.51%
Random Forest 9.17 86.26% 85.00% 77.74% 81.21%

Neural Network 6.47 82.58% 81.31%  76.48%  78.82%
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Support Vector Machine 8.26 73.97% 79.17%  50.35%  61.55%
Random Forest 5.51 84.83% 83.64% 74.93% 79.04%

Neural Network 6.12 83.84% 81.12%  74.49%  T77.66%
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A15199 2 L USEUABUUSEENSAINAISIILUNNNLDNTLSENTHBAVUINNN 20x20 ANLa (5i0)

danasiiu L’Ja’lﬁﬂui (W)  Accuracy Precision Recall F1 Score
Decision Tree 532 82.97% 79.13%  74.30% @ 76.63%
Deep Learning 6.04 82.10% 80.02%  70.17%  74.77%
K-Nearest Neighbor 5.56 82.57% 78.41%  73.96%  76.12%

P = =~ a a ° ¢ a
M137199 3 LUSUNEUUTEANTAINAITIUNATNDNDLTENTIDNVUINAIN 30x30 WALLA

danasny na'uf%auf,s' (W)  Accuracy Precision Recall F1 Score

Naive Bayes 7.55 72.33% 63.20%  61.85%  62.52%
Support Vector Machine 15.58 71.70% 56.03%  5237%  54.14%
Random Forest 8.09 85.60% 84.23% 76.29% 80.06%
Neural Network 8.32 80.14% 75.33%  70.62%  72.89%
Decision Tree 8.57 83.60% 79.90%  75.46%  T77.61%
Deep Learning 7.49 81.84% 79.25%  70.08%  74.38%
K-Nearest Neighbor 8.38 83.54% 79.75%  75.49%  T77.56%

nansi3suiveaieuasUszansnmlaaansnsainsinidala¥alalsun-2019 (Wnwuinnm)

drunavesnINAauMIFuiveaaisaazsUsliusEAnEa M Insaivedung
dosifumsusuiinanavesnmioneLsvssenlyiiiy 800x800 uay 1,024x1,024 fnLea WATBINS
nagounyi Aranugndesutuguiutufuieras 86.65 way 86.70 MWailuniaidousiiu 28.56
uaz 31.06 Wil mud iy danandluassd 4-5

A197199 4 WSBUiBuUsEANEAINAITTIUUNAINBNTLITNTIBATUIANIN 800X800 NALLa

danasny L'Jmﬁﬁlui (Wil)  Accuracy Precision Recall F1 Score
Naive Bayes 27.58 72.50% 64.36% 64.25%  64.30%
Support Vector Machine 29.49 74.24% 75.89%  51.03%  61.03%

Random Forest 28.56 86.65% 85.66% 78.32% 81.82%
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A15199 4 LUSeULgUUSEANSAINAISIILUNNINLBNTLSENTIBAVUINNIN 800x800 AnLwa (M)

danasiiu L’Ja’lﬁfmi (W)  Accuracy Precision Recall F1 Score
Neural Network 27.34 85.17% 82.39%  77.38%  79.80%
Decision Tree 29.13 85.07% 82.18%  77.29%  79.66%
Deep Learning 28.00 81.84% 79.15%  70.21%  74.41%
K-Nearest Neighbor 28.44 84.71% 81.38%  77.23%  79.25%

A15199 5 L USeUAgUUSEANSAINAISIILUNNNLDNTSENTHBAVUINNN 1024x1024 Rnwea

danasny mmﬁau;’é (W)  Accuracy Precision Recall F1 Score

Naive Bayes 45.33 72.48% 64.30%  64.23%  64.28%
Support Vector Machine 37.23 47.16% 44.52%  48.69%  46.51%
Random Forest 31.06 86.70% 57.01% 78.23% 65.96%
Neural Network 43.52 85.09% 82.11%  7747%  79.72%
Decision Tree 43.09 85.39% 82.90%  77.37%  80.04%
Deep Learning 30.06 54.47% 52.32%  62.79%  57.08%
K-Nearest Neighbor 30.08 48.32% 75.28%  77.12%  76.19%

Gl

mﬂmiﬁﬂmwamwwawummwLaﬂsaLiém'gaaﬂﬁﬁsiamzmunm%‘auﬁmmLﬂ%‘lamaz
Usgavsnmniswennsainisindelidalalsun-2019 vedunaiildsunisimuniuiy lauananalidiu
W89 YuIREs INENTLsENSIenTiwaneneiy Idna ﬂiwmGiaﬂsxmumiﬁauiﬁumm%aasha
Falau AoilleviinisansuinvesniweneisdamanisouiveaniesazldnalunisFouiiosas
Lwi‘LJizﬁm%mwﬁmmmgﬂﬁaﬂumiwEmiaisuaﬂmmaLﬁ@ﬁ?’]LLuﬂmWLaﬂﬁzjl,isjm'mﬂﬁ%ammé’w
LLaziuﬂia‘jﬁLﬁu‘uu’]ﬂ%ﬁ]ﬂﬂﬂwL@ﬂ%LSé%iN@ﬂIﬁﬁﬂ’J’ma%ﬁLaEJWQQ‘?Tu Aunlng/u M3Feudvonndesay
ﬁmﬂ%naﬂumiﬁaﬁmmm%aﬁlﬂmﬁu Wulieafulszansnmueslunafssiiutusuiuegiad
Todiy Femavesnisinudenanil [ddenadostunanisinuiseves Thambawita et al. (2021)
fleFnwnieatuanuasden (Resolution) T8ININSTUUNINAUDMNSTLESUIINNIsdasndas filude
HANTENUADUTEANSAMANUAINYNABILUNTTILUNUTHANANTEUUNIALDMNT FIEN5ISeu3T0s
e uane3TiulassieUusramiisnuuudyiauinis Tnslusieaunanisfine wui mnuaziden
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yosnmsEUUMAAuesTIvuaiikendstutu Snansznvegredniuieussansawduna
gNAadluNMITUUNANTFUUMGAUBINS
mvﬁums’LsaaaﬂasvmmiLsausﬂuaaLmaﬂumswwuﬂumammummau%‘lummﬂ‘mwaum
e 7 Sana3viu smmawlmmﬂmsmaaamuiuLmawwwmmmﬂaaﬂasmumm ffu wuinsvegiaa
Tunai3eus (Training) wagnsuseliuUszansnmaesnisnensal (Accuracy) lawdsiulumuuuig
voanmeiildiandlumanad 1 - 5 sammaseduadidsanesiuilinarlumaiouivoasdosion
warldlupamsnensallsafndeliialalsun-2019 fussavsnmidanfodaneifiutndulnediousu
anvuanidiy 20x20 finiwa lemnugniesiesar 84.83 lHnanSeus 5.51 unit uazilevensruin
mmamméwmaamﬂu 1,024x1,024 finia leinnugniesiesay 86.70 Tdaarlunisifeus 31.06
Uit JsaonndosiunanisAnuives Wollek et al. (2023) 51891310 MLONBITENTIBATUIN
1,024x1,024 finiwa Wenuszavsamlunsduunussianamaiian
nan1sAnIdeiuanddiifiuinmuiavesnimensisdnsseniiarldadalunaiiiovnluld
Suunnmenussnsseniunsruiunitadelsnfndelifalalsun-2019 Fazgrlfifudumiaie
ProunndiEnuitedelumslieseidowuy Tnasnmenussnsreniifvwalvgfnuasdeagediu
Tunsduunasdianugniesiias wissznanvesnmsSeusvenniosnfintu uadlumamsstudaumn
yuALazANLaTIBEATBILeNTLENT T aLdnuTedauaziBuns1 nsruaun1sGousarly
nafesvililausinglunsiseud wivssavsamnsiuunamazdanugndesiianasduiiu

dalsuaunus

datauauuzn1siman1 s luly

MnranisAnyideluadsiuandifudrimuntesnmenassnsseniinuldadidiaa
visuuudiasnisiSoudveaadedunisiinunussinnvesnimenaisdnsisen weliidussuy
fremdelunssviumidadumsdnidolalalan-2019 tu wwdmansznuseszernailunaiious
veumdoazdsyavsnmwlunssuundssanuean fei mnezsiiunsimunieasszuula 9
fitmunaasfiagdesiisdsanumngaumnadiuruiavesnmensisgvsiseniiognluly sauks
UszAnsnnilasiintudloszuuildsunisesnuuunasiiauty Tigninluldaduayulussuuaud
fufiunisey vietagiannsolulusuan

Foruanusdmiunsidunsaialy

1. Wasuyateyanmensistnsrendundeyavesiihenieussensine welnsilule
Uslomiintuduyseansnm

2. Winmdmanemsiinyiseidumsnunavesnmenaisdvsieniiansdmiunsiouives
wies ipatuayumsiaszuuanaitadtlsefnidelsalelsu-2019 Wanugndesusiudiiudu

AnAnssuUsENA
YOYDUAMAMULINNIAIUNTUNNEINYAIINTN N TUNNE YRl Sane 1 UIaduaSIaUN N

sualanvuan 8Lnedsaene Jwminae ufsdalausuurInangnITuNIsaTesTIIN I luay

uningndosusigan veveunuteyanmenusinsendiliiunnnssusmedaiunasgiuan



148 | U9 18 aduil 2 (nquniAx - FwAY 2566) n3eednd lesAns wazaue

Aules www.kaggle.com Fegnldidudeyandnlunisnaassuaznis@nuided wazluvineian
VYBVBUAMNBIUATUANUNTIUN IR UAYa e UseIUeuuseann w.a. 2566 USN153ANTT
lnuamgInenamansuazmalulagilvinsatuayununsfinuidelunsall

LONA1991984

Alghamdi, H. S., Amoudi, G., Elhag, S., Saeedi, K., & Nasser, J. (2021). Deep learning
approaches for detecting COVID-19 from chest X-ray images: A survey. IEEE Access, 9,
20235-20254.

Al lmran, A., Amin, M. N., & Johora, F. T. (2018). Classification of chronic kidney disease
using logistic regression, feedforward neural network and wide & deep learning.
Paper presented at the 2018 International Conference on Innovation in Engineering
and Technology (ICIET).

Ausawalaithong, W., Thirach, A., Marukatat, S., & Wilaiprasitporn, T. (2018). Automatic Lung
Cancer Prediction from Chest X-ray Images Using the Deep Learning Approach.
Paper presented at the 2018 11th Biomedical Engineering International Conference
(BMEICON).

Chakraborty, S., Paul, S., & Hasan, K. A. (2022). A transfer learning-based approach with
deep cnn for covid-19-and pneumonia-affected chest x-ray image classification.
SN Computer Science, 3, 1-10.

Chowdhury, M. E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A.,, Mahbub, Z. B., . . . Al
Emadi, N. (2020). Can Al help in screening viral and COVID-19 pneumonia? IEEE
Access, 8, 132665-132676.

ltoo, F., Meenakshi, & Singh, S. (2021). Comparison and analysis of logistic regression, Naive
Bayes and KNN machine learning algorithms for credit card fraud detection.
International Journal of Information Technology, 13(4), 1503-1511.

Khatami, A., Araghi, S., and Babaei, T. (2019). Evaluating the performance of different
classification methods on medical X-ray images. SN Applied Sciences, 1(10), 1-7.

Laal, M. (2013). Innovation process in medical imaging. Procedia-Social and Behavioral
Sciences, 81, 60-64.

Masadeh, M., Masadeh, A., Alshorman, O., Khasawneh, F. H., & Masadeh, M. A. (2022). An
efficient machine learning-based COVID-19 identification utilizing chest X-ray images.
IAES International Journal of Artificial Intelligence, 11(1), 356.

Oh, Y., Park, S., & Ye, J. C. (2020). Deep learning COVID-19 features on CXR using limited
training data sets. IEEE transactions on medical imaging, 39(8), 2688-2700.

Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A, Kiranyaz, S., Kashem, S. B. A,, . . . Khan, M. S.
(2021). Exploring the effect of image enhancement techniques on COVID-19 detection
using chest X-ray images. Computers in biology and medicine, 132, 104319.



MsanTideuaziau Flaseainsal lunssusunyuiud auIngimansuazinalulad | 149

Rahman, T., Chowdhur, M., and Khandakar, A. (2022). COVID-19 Radiography Database.
Retrieved from https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-
database

Reshan, M. S. A, Gill, K. S., Anand, V., Gupta, S., Alshahrani, H., Sulaiman, A., & Shaikh, A.
(2023). Detection of Pneumonia from Chest X-ray Images Utilizing MobileNet Model.
Healthcare, 11(11), 1561.

Roy, S., Menapace, W., Qei, S., Luijten, B., Fini, E., Saltori, C,, . . . Sentelli, A. (2020). Deep
learning for classification and localization of COVID-19 markers in point-of-care lung
ultrasound. |EEE transactions on medical imaging, 39(8), 2676-2687.

Salahuddin, Z., Woodruff, H. C., Chatterjee, A., & Lambin, P. (2022). Transparency of deep
neural networks for medical image analysis: A review of interpretability methods.
Computers in biology and medicine, 140, 105111.

Thambawita, V., Strimke, 1., Hicks, S. A., Halvorsen, P., Parasa, S., & Riegler, M. A. (2021).
Impact of image resolution on deep learning performance in endoscopy image
classification: An experimental study using a large dataset of endoscopic images.
Diagnostics, 11(12), 2183.

Veena, H., Sreeja, A. N, Reddy, K. H., Hasmitha, V., & Lavanya, R. (2022). Multiclass Deep
Model for Diagnosis of COVID-19 using Chest X-ray. Paper presented at the 2022
6th International Conference on Trends in Electronics and Informatics (ICOEI).

Wang, L., Lin, Z. Q., & Wong, A. (2020). Covid-net: A tailored deep convolutional neural
network design for detection of covid-19 cases from chest x-ray images. Scientific
reports, 10(1), 1-12.

Wang, S., Zha, Y., Li, W., Wu, Q., Li, X., Niu, M., . .. Yu, H. (2020). A fully automatic deep
learning system for COVID-19 diagnostic and prognostic analysis. European
Respiratory Journal, 56(2).

Waranusast, R., & Pattanathaburt, P. (2022). The Development of Mobile Application for
Assisting COVID-19 Antigen Test Kit Results Reading. Paper presented at the 2022
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC).

Wollek, A., Hyska, S., Sabel, B., Ingrisch, M., & Lasser, T. (2023). Exploring the Impact of Image
Resolution on Chest X-ray Classification Performance. arXiv preprint
arXiv:2306.06051.

Yadav, S. S., & Jadhav, S. M. (2019). Deep convolutional neural network based medical image

classification for disease diagnosis. Journal of Big data, 6(1), 1-18.



