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IMAGE FEATURE EXTRACTION BY DEEP LEARNING MODELS FOR REVERSE IMAGE SEARCH

Chakkarin Santirattanaphakdil* Suphakit Niwattanakul®

Abstract

Image feature extraction by deep learning models for reverse image search was aimed
to develop a model of the image feature extraction employing deep learning models and
evaluate the precise results of reverse image search. This research utilized ResNet50 model,
which has been pre-trained transfer learning then well-tuned as the feature extractor for a
dataset of 20 Thai-food-image categories that have been internationally popular. The processes
mentioned were constructed as a dataset representing a semantic image for comparing with
search images using cosine similarity measurement. These processes enabled the fast and
accurate image retrieval without the need for labeled data. The research resulted showed the
precise evaluation of the reverse image search, especially for the first three results achieving an
80-percent precision. When increasing the number of retrieved results to 5 and 10 images, the
precision was at a good level. These results aligned with users’ behavior, who have typically
focused only on the top-ranked results. However, similarity among visually alike images,
variations in viewpoint, scale, illumination, including background clutter affected errors in
recognizing distinctive features. The outcome of this research was an evaluation of the
performance of the model employing in the real-situation scenarios, which could serve as a
guideline for developing image retrieval systems in e-commerce or duplicating image

identification for online media.
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feature) NanunsnaSuginguisesAausenaufiaglunin (LeCun et al, 2015) Fuwilvlunaaiunse
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JUAMAUMT (Image query) ldddanlavgnausiugn (Mishra et al, 2020) a1nnsafinAmuan Mg
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W9A NEMTUNITAUNIA NG ouUna uA 2801518 sulusunsuntwrlwneu (Python) uu Google
Colaboratory wuuiiAnldaneiliiumsnennsnsuszananaiisty mheanusvuinlngdu wazian
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Thai food PCA |mage
image dataset ResNet50 Principal Component || representation
. S ol 1 Analysis
@A%% dataset
= £ ar a e 3 & = B 12
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1) mswienyadoya (Dataset preparation) fisndudniunsiinsizsiguniwlunsiam
muuunsaiaAuanvuy kaznisAumsunmwuudeunduuuyateya FoodDudy (GemmyTheGeek,
2021) IF¥umsitmutuiioatuayuanudesnisvesinveaiivwasfuslnaiiliduinsiuomslng
shemsTideyafsafuseiuaanda uazdrudsznoudidgluemsusiazan Fefiuseloviseridl
Tofind1ueIms 1w Nsuiasemsueein Yadeyausenaumeninesivg 48 $18n13 91u3u
11791 14,000 NN i’mi’awﬁ%aL’%I:ué\’umﬂﬂ1iﬁwmmshuuwamxla%uaauiaﬁ 191 Google way Bing
Im8168’@"'1ﬁuﬁﬂsauﬂqu%aa'nm3‘17'1'161’%’11@1’4'1@81111433ﬁummﬂma WU Tom Yum, Pad Thai, Lag Green

Curry lngunsAnnsasANuvsnzauvenniiiellayadayaiiauysal wagn1uN1INTINABUANAIN
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Tuusuneng 9

AT AN 19N TONTINELUUIRINZIIEAY 20 TIUANTIINT LU 40 SudU
lgsunisuuzinduoimsinedilinaswain (40 Thai foods we can't live without) (Wiens, 2017)
g dules ONN Travel Toua 1) fugh 2) wnedu 3) wnadeamiu 4) neuus 5) wneTaiu 6) wneda
7) 13 8) nyens 9) Fravmy 10) dravunla 11) Frafuld 12) a1v 13) danzinen 14) dadinugaiag

Y o

15) dush 16) faitnifa 17) fadion 18) fnlne 19) Sramdleaneaiag wae 20) dsvenilimes Famnsadt 1
Tneduguammemnsangadeya FoodDudy 318158 100 3UNM T3wady 2,000 JUnm wiad1adu
yadeyasensemnsuuuliifithermiudesya (Unlabelled data) tileuiunsimunssuuiianansadum
violFsuiiisuemuadeadsseningunnlduiilaglidedldthemiuiiiossyaana neuazu3unw
awitsmualivuawindudy 2244224 fnwa Fudurmanesguiidenld Wesnamidsue

"Lajwhﬁ’u%a'qma‘lﬁﬂ151Jssmawasﬁa;3asummmLﬂuixuu waziunselumsauinvedlng

A19199 1 579115815 INETIUIU 20 S1813 LLa%ﬁiaﬂWﬂgUﬂﬂWﬁﬂﬂﬁﬂ%@Ha FoodDudy

IYNIIDINNT é‘fqaehqgﬂmwa'mqs

1) Audn
(Spicy soup)

2) wnIdw

(Sour soup)
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M3197 1 5197159115 INeTIU 20 18015 Lagiieg1gUunmaInyateya FoodDudy (#e)

IYNIIDINNT ﬁ"aaei’mgﬂmwa'mﬁ

100

3) WYY

(Green curry)

4) WELUY

(Panang curry)

5) wnasasiy

(Massaman curry)

6) WN9IA

(Soup)

7) U3
(Omelet)

8) e

(Grilled pork skewers)

9) InvMy

(Thai pork leg stew)

10) ¥1munta

(Thai chicken biryani)

11) 91sidln

(Hainanese chicken rice)

12) anu

(Spicy minced salad)

13) HANZLNSN
(Stir fried Thai basil)

14) fadinuzaing

(Braised chestnut)
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M3197 1 5197159115 INeTIU 20 18015 Lagiieg1gUunmaInyateya FoodDudy (#e)

IYNIIDINNT é’l"aaei'mgﬂmwmmi

15) dusin

(Green papaya salad)
16) finfinya

(Stir-fried morning glory)
17) find5n

(Fried noodle in soy sauce)

18) finlne

(Thai stir-fried noodles)

19) Yranileueaiing

(Mango sticky rice)

20) dwgilnnes

(Egg custard in pumpkin)

2) nMsarnAUANYULAI (Image feature extraction) faelunail lfFun1siniuaaemi
(Pre-trained model) 1t o1l muiluiaadiviunissuunguanemsinedisainuaiansa
lunrsangleundnus (Transfer leaming) annnsRnRuuuyatesavuIalvg Samfunsusundduing
sy (Fine-tuning) Tmanzaufuyndoyadonisusuanindnuisdiureslinng vielnduiane
vntuveslasstty shlvaunsaldnulfednaiiuszaninmusiuannwnadouiuanssnyndoyaiiy
Hagtuivanelumadildsunisilnsudrsmihfihandnenssuveslassisussamiissuuuaeulgiu

wmuiedunguan ludesduaneiduladndonlunaiienaaeuiugatoyasunainau §07d

Y

= o & va o ° ° a
d9UDY LAYEDIUNT ﬂmzﬂpﬁlﬂﬁummaa I1UIU 4,512 AN Iﬂammi‘dizmuﬁ]um‘u 3 59U

a ' [ v o

wuUNaansIudaseraiy walttnanisussiliudmAedsiislininurainnisuantosasaudsly
seauTgausule Hani1sUsEMiu WUl 19 5 laaa Usenaunae ResNet50, VGG16, MobileNetV3,
DenseNet121 uag SqueezeNet Huilmaugnaes (Accuracy) lunisiuundeyawiniuiesas 81.06,

81.03, 80.03, 81.05 uar 79.01 auadu dednegluseduiigiwazAaininugnaesianunindidesiu
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28191588 wearluinatudanuwanstatuag19tman ealus1uAINLS LAz IUINvaliAe ATl

Tunuideidadentdluma ResNet50 Wulassadsiiug1u (Baseline model) ileanndiussavanings

o % v

lun1suszanananinale T dwmesussana 25 a1uss Falosnitlueaduluguieaduseng

v ¢

VGG-16 uilinadwsfidanuudugganitlunmmedeutssdniam vonanidaduaniinensaud
wingandmsunisanglauainug i osanndvmdniinauntsin3aaemin (Pre-trained weights)
Thdenldnunainuaney aunsadlvuiuldivgadeyalwiliegiesmsuazuaiug Taglidndudos
Ansulawnalmaidausisy feenuanunsalunisfeudaudnuusidudouly ResNet-50 iundsly
Iumaﬁug’mﬁlﬂ”‘%’mﬁaau‘ﬁ“uasmﬂiwmwﬂmamﬁ]zgzgwixﬁwﬁuazmiL’%ﬂufmmm%q
lana ResNet50 (Residual Network 50 layers) (He et al., 2016) tulassngussanmiie
wuuneuligdud i1unsaisloundinianil ndualemiivugadesa imageNet Ingaonuuy
aninsnssuiieusdymidetudedusmasesilasmsiianuing Wesmnluefinniaiy
arwdnvestulassegnaanivinngdielfunaamnsoiFouifnvuziansvesioyaldanionuay
walugnnau wandunutgmdirgy Aennuuriudrwedunaanasiienudniiiuty (Degradation
problem) waztaym1An Gradient flanasauunulianunsasunnmisidneslulabasusn q 1o
Tasaveldl (Vanishing gradient problem) Saiflufinnvesnistiiuuifn Residual learning snifieudilay
Fodrindanan TnedsudmnegvedasaisanmsiFeudilsidudmneuuunssluasen (Direct
mapping) 1Ldun1siFeuTduisvesiladduitimng (Residual function) unu iieanaududeu
yeanszuIunIFoud esnniladduilaseedeasouifanudouazasdunsannniimsous
laiutmnelun st
nshanunglulasang ResNet50 vukwiAn Residual learning gnununlgnulassadig
38071 Residual Block Faifudrutszneundnuadlinna luusiaz Residual block Teyadunnazgn

darnuialgasyeeng 9 Wi n1sviheeuligdu n1sUFuusieig Batch normalization uagnisldianduy

v !
¥ [ o av v [

nseAU RelLU ioas1eilanduiidensous vavanduileadduilaszgnuiniudeyadunaiiy

HIUNTEUIUNIT Skip connection §eielvidayaaunsaluaniulyduaisesdnluls Ineisn1sil

a Yy '

lwgawsigisannisaqdeteyaseninamsdsiuaeeswintu widsdesiutymean Gradient

ey megldlulasadnendainudnuin deeravililumalidanunsafous degradusednsam

InglassadrvasanUnenssy ResNet50 gnesnuuuinegaluszuy Usenaudme 5 d@u fanini 2
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= [C]
L ) L L / L |
[ [ !
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Ad 2 Taseas1aweeantnenssy ResNet50

o w

INNMA 2 LAseas19veaanlnenssy ResNet50 fauwsazdluiunuindralunisaia

o

AaanuazAntoyann Weldlunumsinseikasuundssinnnm I51vazidendiail

dil 1 msuszaanatasdiu (nitial processing) Tnglugisusndayaninazgnuszaians

¥ o

HutunauiidAey taun Zero padding evgngauinesnwliiningaudmsunisamualuaees

=

dnlU mudaeaas Convolution #sldinses (Filters) 91uau 64 Fandivuin 7%7 iearinAmudnyny

v o
A a

UFIU LYU VOULYA (Edges) waguill (Textures) ¥0330g 899Nt uagly Batch normalization

=,

Wi ausuATeyaldinunzandinsunisiieus uazly ReLU activation i avit uadnulu i avdu
(Non-linearity) vasluiaa siofien1shinadwuunIniian (Max pooling) e oYUIALTIN UN VB

U

o

foyanim lnsdinsanidnuaeiiddnl idmiunssuiumsatagudnuaslussduiigiuluddaly
dfi 2 msaﬁ’mmé’ﬂwmmﬁaqﬁu (Feature extraction on early layers) Inglalassasne
Residual blocks 91U 3 Udan waazuasnUsznaun8Lalees Convolution 3UIA 3*3 LAy
Skip connection wiaidunalnnsideudeuuuiiuawesiiatnsadisantlymn Gradient vanishing
uazfiulsEAvsnmnadoudandnuaeiifienudnannty wu 3Us19 (Shapes) ward (Color) wasing
d2udl 3 nasade AMANYUYIEAUNAIY (Feature extraction on mid-level layers)

AUszNaUA18 Residual blocks 31u7u 4 Udan F9in1siA NI wIusInTaslulaleas Convolution

' v '
1Y =% o =

Wiaiiuauaunsalunisdudeyandudoudu Aadnvaueiilalurisilisunudeyaddasaiiuay

U

v '
A A

\Bau3um (Contextual information) 191 a1nane (Patterns) WagAMaNBULITINUN (Spatial feature)

FaflanudAgyrenTiinseinarUssananalassasiannluseduiigedu
diul 4 nsadnauanuueidedn (Feature extraction on deep layers) 910 Residual
blocks $1uau 6 vden iieiseusnuanvarluszauianwaziuuusssunniu wu nsuenguwuy

Y8ITNYLANILILAT LazuSunBaiiunveadng tnunuanyuslugndaunsatsuenianuwnnee



MsanTideuaziann Jlaseainsal lunssusuayuiugd auingremansuasinalulad | 294

sgvinlssinnvesinglusunmldegadanuianngdmsunisilvldlunuinsginmidesnis
ANUUNUEFS LU MIAUMTUAIN waznsTwungUAndugou

dufl 5 n1safnnuanyuzduganY (Final feature extraction) A1e Residual blocks

v
=

° < ) say v s v | a v .
Fruau 3 vden laefllesiildnnawesanrineazgndevuinideiuiisie Global average pooling

o @

Fergananududouvesdeya uidinainumAnddyvesnudnune vesuwiazdinsedly antudeya

o q

gnuUastiaglusuianneiniy Flatten layer uazdwulugs Dense layer dmsunisduunainly

Y

Yatoya ImageNet NHIWIUARAMNAY

nsrvuMsananuanvae g teya (Input data) JUAWARIUNTEUIUNITASEUYA

XY [ v

Teyadrgiradnnudnuaedion1susunsa (Fine-tuning) Tuaa ResNet50 Linaneidusaain
AMANYUENY LUUNITAY Feature map NN lasUsuudslassasnalana tudiua 5 3ann136n
Dense layer Fuduiawasgavineiviminfduunguninesnainluma undanssny) Global average

pooling layer 13 iilesarnfiunumdrdglunisaniifives Feature map wlaslunnmasaudnuaue

o

(Feature vector) udusunuvestayafidrfgyanamiiamsailuuszendldlunisAumgnmn

o

v
o LY

Taglsifiosflanmadnsannnsduunuszianam 3nian1sda Dense layer oon fataeifiumnudangu
Tifuluealunisinnmeinudnvay UdinseidoyaldinandnuzlanizuasnIn Wy n1saum
sunmiilidnunaiendeiu wiensinsgidnuaeBeiuiivesnmludyueing 4

3) MyanliAveyaniomatan1sitAsiiosdUsenaunan (Dimensionality reduction with

PCA) Lo ndayaniduiudias (High-dimensional data) Fednagiinduainnisannnuanyuy

= saa o aa ) o 9 v v a o v Y o a a
SINL’JﬂLmEﬁ‘wm]Wu’guumq\mumﬁ]V]WIﬁﬂﬂSUSsM’JaNa%amﬂaumm%u%ammﬂ%vwwEJ’lﬂimﬂLﬂulﬂ DAY

v
@ (YR

§997198 AN TENUADUTEANTNINUDIALUU (Model performance) (Keogh & Mueen 2017) Adtiu

o '
o = o

nsandfdeyainlutuneuiddglunisusuussussaniamesinssuiunsinsidoya nuided

Y

lgnsasnziesAUsznaunan (Principal Component Analysis: PCA) (Jolliffe, 2002) Fadunisly

a Y A o

weiafldsuaruondnnldlunisanifdeyannisudasteyannifnaddivionas lnsldgaydy

Y

v
o o o al

ToyafidrAguindn wadalddugiuainiuiAalunsdumunuliflndfisoninesddsenoundn

(Principal components) duduunuiiaiuisaeduisanuwususiuresdoyalauiniian Inen1sm)

o
o

A1ANUKUTUTIUgeERvastayaluwsaziiiiunsiaseiesduseneuninazaianisulandaduniaeg

o

anduuliivestayaadtuddiunddaiige

s

ATZUIUNITIATIEHOIAUTENDUNSN 2215 UAUAIENITAS 1D BULINABIAUTENDUNAN

= a4 A A ° s 1Y v v Aaaa a ¢
FaduasesdlenlilunisAuimuarsryssauszneuninvestoyaluyntoyailiiigs lnen1siiasey
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aeAUsENOUNANIEYIINIIMIAIANLUTUTIugsgaludeya wazMvuaunuiiAlndiiaenadesiu

ANNKUsUTIUWEITY nasandudeuiandesdusenaundnazgnuiuuisyadeyaiildannnisadn

'
d a

ANANEUE W oN1AYRIRIAUTENBUNANT dansneS uieAuLUsUTIuTeIdayalauInign

o

JeliiieausiazdrvanifvesteyaliiviomieslAnd Ay ian widagielunisusulsasednsnmees

a

nsUsvadanateyalutuneudaly 1 nsasefLUUS eI TaLatiudy esannsania

U

U0y a9 vmaammwmwawawaua 3k amf]mm‘mawLﬂmmﬂmimmmumaamﬂﬂ LU ‘f]m‘mmm

wsUsIuvestioya (Variance) filslanunsneduneldiamn

o

7Y

o

UAmuedIueRUTENaUnENWIIAY 300 LiDAITUANAINENAATENINNITARIR

o N =%

Yoyanaz miiﬂmmmLmsﬂiawmmuiuﬁmsuamw’[fﬂumsamﬁmmawﬂﬂu‘mma Model training)

°

Y
éi’qﬁumuﬁaﬂmmuaqﬂ'ﬂszﬂauwé’ﬂﬁmmxamﬂuﬂizmumiﬁG’Taqﬁmsmﬂmnwawﬁﬁa
W $1ufiAfidesnisanas wazdadiuvesnunusuniuiifesnisaaliluteyafignuvauda
WenavausinudpinIslumMsnlayadAgylikagimuussansamlunisiindiuuudely

a) miaiywqméﬂ’agaLmummumwaqmw (Create the image representations dataset)

&

dolunszviunmsiiddglunisdanisuaniivinudeyaildnnnisuszurananin Jadunisudas

Joyasnjuamlinarsidudeyadadaefiaruisaiiuidssuranauazldnudaluldogiadl

o v al

Usgansnm UsgneudedoyadiAgilaantunousing 9 Tunisussunananin 1iu LnnesAnEnyne

o

'
.:4

Aand@ual (Dimensionality-reduced feature vectors) @ sl@annnsgulunisanid @

g

93 A Y

MIIATIEeIRUsTNaUndn eAndentaziiudey yad fidd mammﬂm‘uauaﬁﬁ“ faq 52U oULans

Y Y

o w

13 o = aa = &
adﬂﬂizﬂau%aﬂﬂiﬁfﬂ,uﬂ’ﬁaﬂum VY a gFadugaIudn SL“LJﬂ’]iLL‘lJad“ZJE)llaﬂ’lWGLmUuL’JﬂLGlaiﬂmaﬂ‘Hmu‘W

o

wanzaudmiumsthlldnudely uenanddsdnmsduiindumadaivvesgunmusiazing Gails

a@13115aRnULaT DI NAURTULATUR

v
t% v

m3danudeyaludnvarlazdieliadayaunuanumnevesnmyhuihiiluadoyad

q

anunsatluldlunsfumsunm Wesndeyafiivsiunnludsduaviuanmnsaisuiisuniny

AaNeAas (Similarity) a3 mang 9 laegresniaiinarlisududowinisuszuiananinduatued

a

Tuusiazass naensudglinisuimsdanistoyaduldldegdfisudovuasiivssansam dududiu

o

annlunmsiauueundiaduseliluouan

Nan15I8wazanUsIena
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nsananudnyuzanalgluman1siseusdadndmsunisAumsuningeundu
wamansiseuazeAusonamuinguszasd liun 1) eiamnduvunsadnnudnvazamge
Tunan1si3oudidedn uay 2) tieUseliumuusiugvemamsiumnnmdoundu finsasiBondsil

1) nanswaduuuMsatnaudnvazawelunanisieusiddn oadanudnuas
sUnmuugadeyagunmemsinediléiuanudenanunnvasiua 20 s1ensieluea ResNet50
frunsaigleunrmdannisiiniuuugedeyavunalng Srufunisuduusslunaiiisdalimnzas

yadeyamen1suTuAmlnusduveslunasiuinduamzutuvedasinyg neulziuas

de

\Ju Feature map T 9UsEnoUR281INIABS 1T 9A LAY YuIA 2,048 semUssnouii idunadnsan
nsrvuNsaienuanvae lnennmesilaainiaiges Global average pooling Fevintfiasudeya

NAResunInduualngfilaaniaees Convolutional neunthilleglusuiuuvesinmesuuia

1 fEvuansnvardAgyuosnIn Wy U 5Unse @ viieliuiiiluwaausaiseuiiaznsadulaly

U

&

seninnsindu neaudnvauzmailldudeyaiiddgludsunuaglasiaiavesninduaty

Y

o [

ag13lsid Arududouvedifdayaninaitenvdwaneuszdniamlunisussuiana

Feo191inlugUamAnanUuniadif (Curse of dimensionality) detiunsiasizviesdusznoundndagay

A a

wlastayandiinadviivdediivisnas lnedenssnwmanuuususiuididgluteyald Bnsildifies

v
o

Hiwannutudeureioya uidieiudssansnmlunisussiana nuldelidatuluiiesdusenay

drAgyfiandiuan 300 esrUszneu nedndeyanifinansenutieevseiidudyyrusuniusenllneou

oY g

=p

srilasralugedayaunuanumnevesnm dWedudnuunsfumsunmgaundu daniwi 3

Image query Cosine

distance

— PCA

ResNet50 Principal Component

Thai food Analysis

image dataset

T d7O 8

Image

Ajueyiwis

representation
dataset
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NN 3 ﬂixmumsé’umgﬂmwé’amé’uSuﬁuﬁqamsﬁwmwﬁum (Query image)
gy Tneriuduneunisuszananadiamii (Pre-processing) titeUurunawdu 224224
finwaimngautunsatngadnvuzgUunmlulung ResNet50 mmfumwazgﬂamﬁ%aaﬂaﬁw
NSILATITADIAUTENOUNANUAI92UY Feature map voinnAum S sulisunyu Feature map
Agndmfiulilugedeyaununumnevesnn Judusdedoyaveanmiliiunisussaianaaiamiin
wagatanudnvarudl nsTsulfisui ldnisdiuinaiauadlaled (Cosine similarity)
(Manning et al, 2008) \Juunsiansadaaaniildiietnruuwana1asoanundiendesening

LNLMBSABITILUNUANNMBSTINR AAUNITA 1 FIBE19NTAIUINTEEENIELALlYUINNTEELU9TENIN

LAWBS A LATLINWS B

] o A.B
Cosine similarity = ——— (1)
LAl IBI
vualy AB Ao WaALYIRA (Dot product) Yo INNBS
[|Al] wag ||B]| A9 TUINVDIUINLADT A LAZLINLADS B TIAIUIUAIN

NASINVDIANNNIERIUBIwAar AU sEnaulunNmes

Cosine similarity Ao ApuAdelalel Jaliaeglugas [-1, 1]

INFUNTSTA 1 Nswlananiauaaledalaleyd Mnda1lng 1 Nu1efaInnes A way

G|

VNS B dfiAnainaeadsnuuin TuvaeiaAnlng 0 munedannmasluianuduiusiaienig
LATAINING -1 MUN8DINMBSETNAN19MSITNAY ALUAlElUAISIWUS U BUANULANFAIITENI1

LAMBS ArAINlAAIYSTEESlabeY (Cosine distance) AYaUNSN 2

Cosine distance = 1 - cosine_similarity 2)

naun1si 2 asiuldinszesvndlaleufianeglugi [0, 2] dsiwderinunadalaley

N

e lnad 1 azdaalviszozmalaletifialng 0 Tumanduiu Wesiauadalaleuialng 0 avdanaled
segznalaladiianlng 1 waziaaianuadsdaledianlng -1 szdenalvssoendaledudalng 2

sziiuldinszeznmadalallildaularivunn (Magnitude) vosinmes urasiduinyuseninginines

v '
o & =

79809 W BNINTUINANIWTIZUNNS (Relative orientation) VB9LINLABDS bUN UL UL BTAAIAINY
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'
a 1 v

wane1BdaInmedsendtanmAumLaranluguteya geaszeeniadesyinla wanadnnin
Iugmﬁﬁaaﬂaﬁmwmé’w&Jﬂﬁnﬁ’umwﬁwmmLﬁwﬂgu neuagdndusiunnlugiuteya (Image ranking)
muA1AuAd1eaduissdununtuniesdmsunisiiaus ifunanisdumyunmunldlu
FULUUUHINTN (Image grid) SufuAA LA EAE e BaZL BAYE AN q fanmil 4 freea

JUNNAUMLAENANITA UM FUAMNToUNGUTINAL 10 JUAMNTHIUATITUTZITUAIUGNABIRIN

v
o =

A3ervgy dauieliaunsadumaimiidesnisidesemndnavudud Inelidndudeddoya

Y

FremiulunimAum

Query image

dl L 1 14 ¥ 4 U o
NINN 4 G]?EJ‘EJ’NE‘UQ’WWQ‘UWW LLa%Naﬂ’Tﬁﬂu‘Vl']E‘Uﬂ’]‘WEJEJ‘UﬂaU‘\]’]‘L!TL! 10 EUJ’]’]W

MEUNTUTHENANNNABIRMNELTE1Y18Y

2) wausziuauusiugvemansAumamgaundu Tngdilumaduuuunageulaglyzunm

Aumlulawwensive 20 sienmsangldmegunmdumiiduuulinediunineu (Unseen dataset)

o
o

F18N1301TaY 1 JUam Tawviadu 20 suan esaniduddinanuaunsavediaalunisina

1Y 4 = £ £%

Audeyalnindanuvainvaty uazazvoutausganiamveslunaluaniunisalasenilyldaunie

Y

suamluuSunfiuaneneiy Wy sUAMATANLLANAAIUTEEZENY YUNBY LaETNe ARDAIUNUMES
grenngeuANdang uvaslnalun1sdanisiuanuulsusiuvestaya 1y anaisluszesy
| Y ° v a a a I A v 1% | '
waneineiu e1avilvssazBenvessunmmudsuly nieyuuesnindiuuunie dud1ee19dnans
ANWULLAUYBIDIMNTLARLIIENTT UONIMNTANNLAITNLANAAY LU LEISTIUTIR Wasanvaen bl

wionstlunm Jaduladeiiiuenududeulunisainudnvue
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o '
(K" N

gaduiadun1sagiaudaanundouvaduinasanisidanululrinine lnaenizluusun

ndldusiasauiunasdoyanazidoulvfiuansiedy iesanmnlunaaiunsnsnwinanuniug

Tuseiugaldiudeyaiiliieiiundeu sztrofiudnenwlumsihluldnuais msnaseuifadedu
FunouddaivreliiiulalaiTumaaunsanevlandluaniunisalasdldedredussans am
wazaeandesfuanudesnsvesliny Juduiiuvesnsligidormadaniiunumlunsussidy
AaLaiug Waiuauiidedeuwazandefionaiafionafiaiuannssuiunsdaluiviedositn
vasuuulunsananuan vz
nMaUssdinangilsmnguaisausmisanaueaiandouresnisUsaduiionniniuan
nsinsanlaefifermgiesiuien linanmsussduiamindeieundu swidetfmua
T a9y 4 viuriinisuseifiunadiegunimdun 1 3Un WA 1 518n11591M15 Yinuaz
5 518113 Wnuan sAunIzUnmlagndeavindu 1 azuuw Tunaassiudy mnldgndeawindu
0 Azuu WovhnsUseifiuudiavihesuuusaianAwanduranLLsug (Manning et al., 2008)

a v £% o

UL UUTLANTAINVBIH ILUUAIAUNNTN 3 INUIUKAANSTONABINITAYTIUIUNAANTAAUNN

U

=

Vianuaduau k dusiumunisuansanishunidu 3, 5, 10, 20, 50 waz 100 JUAMEBIIENNT

v

FuURadnsNgnsediuy K susu

Precision@k = - (3)
k

L a v a v oA

nuAdeiliaudAgAnuRaIandau (error) seriARTalatuANLase d1Aial

D¢

o

TndiAeaturtasannuaniitnisinduiirnugniesgs (33n uasadesd, 2565) Tnsnisfamnaseing
fApumaImAAeudeadn (Statistical error) g wane sufuiiiensusevazihnisussdudnnde
WATY 3 sOUMEFUMWAUMIANLUURad NS T uBasEAatu L wansUsEuIAeA e 9t
aunaaedeuantiosasauidlusesuiousuls

maﬂ’liﬂimﬁumn@%mmm WU ﬁi'lm’muaius?’lmﬂmiﬁumgﬂmwﬁ k dUAUAIUINUIY
miu,amwagﬂmwmmimﬂmiﬁumLf]u 3,5, 10, 20, 50 wag 100 'gUm‘WGiaﬁ&Jmi AnLduAIAL

LUUENRALLINAY 80%, 76%, 75%, 69%, 62% Lay 45% AINANNU AIANS1T 2 tR8AIAINUWLUEN

v '
a = P

ANAULDIUIUHATNS ALY L oUUAAIUNINLAIAINUIUET WUTT NAGHEIINAITAUMIFUA N
19U 3 @1RuegluseAufiin AMUAIERATNEIINNITAUMIUNINTINIU 5 Uag 10 druaglusedud
widlowaansannIsAumdduauanntudu 20 uay 50 JUnw Aanuwiug1avanaegluseiunely

wazilloguaunaanswiniu 100 sUuamludwuuindusedlasunsusuusasielulusuan



MsanTideuaziann Jlaseainsal lunssusuayuiugd auIngrmansuazimalulad | 300

A15197 2 ANANHLIUGURREIINNTAUITUAINT k BUAUATITINIUNTUARAIHAFUAINAINAITAUM

\Ju 3, 5, 10, 20, 50 waz 100 JUANHOIIENTT

o v Precision
AMAUIIYNIIDINT

@3 @5 @10 @20 @50 @100

1) sugh 1.00 1.00 0.90 0.85 0.70 0.50
2)  unadu 0.67 0.80 0.80 0.75 0.72 0.55
3) NI 1.00 0.80 0.70 0.65 0.60 0.40
4) Wi 0.33 0.60 0.70 0.60 0.55 0.35
5 wnefasiy 0.67 0.60 0.60 0.55 0.50 0.30
6)  WNIAA 1.00 0.80 0.80 0.70 0.60 0.45
7 14w 0.67 0.60 0.70 0.65 0.55 0.40
8) Wy 1.00 1.00 0.90 0.80 0.70 0.55
9) Uy 1.00 0.80 0.80 0.75 0.72 0.60
10) dmmunla 0.67 0.60 0.70 0.70 0.65 0.50
11) drsiula 0.67 0.60 0.60 0.55 0.50 0.35
12) aw 1.00 0.80 0.70 0.65 0.60 0.40
13) HANZINGY 1.00 1.00 0.90 0.85 0.70 0.50
14) dadauziing 0.67 0.80 0.80 0.75 0.72 0.55
15) dusi 1.00 0.80 0.70 0.65 0.60 0.45
16) HnfnUa 0.33 0.60 0.70 0.60 0.55 0.35
17) fadon 0.67 0.60 0.60 0.55 0.50 0.30
18) Hnlne 1.00 0.80 0.80 0.70 0.60 0.45
19) druuileanziing 0.67 0.60 0.70 0.65 0.55 0.40
20) dwginnes 1.00 1.00 0.90 0.80 0.70 0.55
Aade 0.80 0.76 0.75 0.69 0.62 0.45

NA1997 2 Weisanluseaziden wui Arpnuliugiveanmdumzuaine msing

a £ o [

dutuegnvdadevatedsenisiifvrtesdunuanuuzvesnn wasUsednsaimvedlaunaild
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1) anudauvesnadnuusanglunineims savmuldansenisenmsidaauuiue
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geegiugn wazdsveniinnes wansdisanuannsavesiwuulunisadnauanuuzauligulug
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Turugndwerfinnesuenaindimdesidaauuaifallsunsusudaseninaduiinneswasilodaven
lunenduiu sremsemnsiidauadieadatuuinegranziug tazwnedatuiuenaduiuneida

AReAReiY wazag MUz sUNsInindifaiu Jseadadeussansamlunisliasginuadiends

1 I

2) U3unvesWivaInTaty (Context of images) LWy ansiisindneglunvusdnuas
Alndidsafu sUuunsenusay wieesdusznouiaslunm srevilinisadnnudnvazddy
Tunmfianuaaiaad ou 1y s18n159 915U s3IANT 197 lunwsind deudeuidussduszney
WuRgfumensensussimduiindnsifeuusnglunmidussdusznou

3) AuLUIUTINTRIgUNIW (Variance of image) Lﬁ@ﬁﬁ]ﬂﬂgﬂﬂ’lwa’lﬂ’]‘iﬂ’juﬁv%vwLLG]ﬂm"N
mngﬂmwiuimmu?ﬁu ﬁaﬁuawﬂisauﬁ’ui‘]agmmmmmiﬂiawuaqgﬂmw (Gonzalez & Woods, 2008)
luvanensdl Usznaume

3.1) AULUTUTIUYRILUNDY (View-point variance) 1l unaainnisaneaine sy

HUNBWING 9 LU MsvyuvSaAsuiiasweinvurluvanelia e1avilinsaianudnvagliaunse

o v o

seyinglaegrauiuglunnyuues iWesnndumiwsefiamenisluninavgnaneinudfeyiud

o

3.2) AUWUUTIUVRIVUIA (Scale variance) FaLARAINTATEAN 9 19U T28EN19TENIN

o

OUAZNARIINENN seNIveIBivEIERRNYRaLd diNaliuuiavesingluninuansieiu
3.3) @n1muas (Ilumination conditions) lagguainiiatglugninweasineiu 1wy wasdn

wasties visouaInyuiliviangan anviilinisadndnvasulunmiianueainniou

[

3.4) Wunasngudau (Cluttered background) 31NNIFIANITUY LAZNITANLAININDINANT

N

v s A A oA v v A A v N Ao av oA 1 °
mEJENF’HJWﬂE]“UE]‘L!‘VﬂlJLﬂEJWENIG]EJ%ﬁWiE]ﬁ’J@ﬁWEW]ﬂﬁ’]EJﬂ“UE]’l‘Wli ﬁiam?mﬂauw‘lﬂLﬂﬁl'ﬂma\ﬁﬂu'ﬂuﬂqﬂ

q

lunmenrsuniunsanianyazanizvesing g
3.5) AunUsuTiuneluaaia (intra-class variation) WinanAuvatevaneiignineglu

AANELRYINUY LU iwmﬁmmstﬁmﬁ’uLLﬁiQﬂUEJ%uQWﬂi’mqﬁuwé’ﬂﬁmehqﬁ’u Fadanasenman e

o

ANAVBIDINITHARESIBNTS

o
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M13°99 3 fegregunmnilymanuudsusiuvesgunm

Context View-point Scale Ilumination Cluttered Intra-class

Of images variance variance conditions background variation

3199 3 Yymanuwususiwvesguninlunsuszanana wusesnlidu 3 Usziiu

'
o w a

A 1) anuuUsuTuiisununsnnafuRadnuurddgananzwas wavdasuniuluain 49919

Ao o

anALAUTAYeIBIAUTENBUNdAYYeI IS Inguranmgnanengliuasadivsanidadaali

¥ N
[ o v

dvesemnsiniisunaziuiiaglidaiau wu wneiduidueiagnaieluniizuasiavenavinlidg v

Y

¥ '
o (Y% =~ Y a

Wulduaziuiiglidaau assiudin anemnsignaslunaidadniuly demalvidvetemsdnang

Y

A v Y v =

vieahaAuass ity tunsiiaasiiddndundugdnans uenantunmiifeosdussneuduuenmionn
o1nsUInMTUnd w3 eseuttsgnnnusisie Tngduvieliseazdeauindendliiieadesdiuaumin
W dndatan Youdeu wiah wieududyanalui unds naenuainudsiitainatazannn
Fadsavumuaulavesduvullanewnsdadugandnansluain uagoravinliidrlaingy
Anudnuzndeududuniootemsiu 2) muuUsunuiidmalifuuuandigudnuasianans
MnNsUAsuLUasuNpuazruInraaiag Tnsaiwiidrsanuuuy yudne viouuBesanavinli
TassaanaznsinmnsesAuszneuveso v sudsuntasiununivuy 1wy evnsussianunaieniy
MnFuLLTeIMTUre LA uRo U uidlerenndutnssiiuruEnuardnvas auy
Faraubstu ssfudufvemsussiamduiinnanguuuasdiuseaziBeaionun wimndieain
Futhsseniududewivilasdiusdonfesuulidhnu vennndusdusamidnissiean
szorlndinnauiiuanizuisdruvese s Tuvagiivenmdeanszeylnaauiliosgdvunedn

wazvnTEaden ANNKUsUTILIIRLUUaalianassuinudnvunddasaiiuiates
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a1msldegnegndes 3) AunaINua1ereIgUnINTENINaAaTd (Intra-class variation) wWarA31a
Adeadatiuvesgunmangluratadeliu (Inter-class similarity) @edsmasonnuanunsavesiawuuly

AMsUANNATaNwr ARt 1Y 819sUSELANER Ve nddLws e TR auTY Vs ulg

AnldnanwasddWelanla vueNunsstaagInue1adurwneduluvianinkazdeouludnain
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