The incidence of bloodstream infections from 8 types of bacteria under surveillance in patients at Ban Mi Hospital, Lopburi Province.

Authors

  • Jirawan Kongjumpa -

Keywords:

bloodstream infection, antimicrobial-resistant bacteria, Banmi Hospital

Abstract

      This retrospective study aimed to investigate the incidence of bloodstream infections among patients admitted to Banmi Hospital, Lopburi Province, as well as to assess the sources of infection, trends in antimicrobial resistance, and the impact of bloodstream infections on mortality. In addition, the study examined the association between infections in other organ systems and their progression to bloodstream infections. This study focused on bloodstream infections caused by eight surveillance bacteria in patients at Banmi Hospital, Lopburi Province, from January 2023 to December 2024.

      A total of 8,397 blood culture specimens were submitted from 3,463 patients. The incidence of bloodstream infections was 11% in 2023 and increased to 12% in 2024. The most frequently isolated pathogen in 2023 was Escherichia coli (51.9%), followed by Klebsiella pneumoniae (15.3%) and Staphylococcus aureus (10.7%). In 2024, S. aureus became the second most common pathogen (15.6%), followed by K. pneumoniae (12.1%). More than 80% of infections in both years originated from community-acquired sources, with no statistically significant difference between years (p > 0.05). Analysis of antimicrobial resistance trends revealed that Acinetobacter baumannii showed increasing resistance to carbapenems (from 54% to 86%) and aminoglycosides (from 54% to 71%). In contrast, K. pneumoniae and S. aureus exhibited decreasing resistance trends. E. coli maintained high resistance to co-trimoxazole, rising from 52% to 55%. The number of deaths from bloodstream infections was identical across both years (30 deaths), with no statistically significant difference (p > 0.05). However, the mortality proportion slightly declined from 22.9% to 21.3%. Patients with hospital-acquired infections had significantly higher mortality rates compared with those with community-acquired infections (p < 0.05). When classified by pathogen, Pseudomonas aeruginosa had the highest mortality rate at 75%, followed by A. baumannii at 50%, whereas Streptococcus pneumoniae was associated with no deaths. Regarding antibiotic utilization, third-generation cephalosporins had the highest Defined Daily Dose (DDD) throughout the study period, followed by methicillin and carbapenems, which corresponded with the distribution of pathogens identified in the hospital.

References

World Health Organization. (2022). Global antimicrobial resistance and use surveillance system (GLASS) report: 2022. Geneva: World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789240062702

กรมควบคุมโรค. (2565). รายงานสถานการณ์เชื้อดื้อยาประจำปี 2565. กรุงเทพฯ: สำนักระบาดวิทยา กระทรวงสาธารณสุข.

National Antimicrobial Resistance Surveillance Thailand (NARST). (2022). (n.d.). NARST—Antibiograms and surveillance dashboard. Department of Medical Sciences, Ministry of Public Health. Retrieved from https://narst.dmsc.moph.go.th/

สำนักงานคณะกรรมการอาหารและยา. (2566). รายงานการใช้ยาในประเทศไทย ปี 2565. สืบค้นจาก https://www.fda.moph.go.th

ภูวดล หาญกิจ, และคณะ. (2565). การติดเชื้อแบคทีเรียดื้อยาในผู้ป่วยวิกฤติ: การศึกษาในโรงพยาบาลจังหวัด. วารสารวิชาการสาธารณสุข, 31(1), 88–96.

กรมควบคุมโรค. (2566). รายงานสถานการณ์เชื้อดื้อยาและระบบเฝ้าระวังประเทศไทย. กระทรวงสาธารณสุข.

กรมวิทยาศาสตร์การแพทย์. (2566). รายงานสถานการณ์เชื้อดื้อยาในประเทศไทย ปี 2566. กระทรวงสาธารณสุข.

กรมวิทยาศาสตร์การแพทย์. (2566). รายงานสถานการณ์การดื้อยาต้านจุลชีพในประเทศไทย ปี 2566. สืบค้นจาก https://dmsc.moph.go.th/

World Health Organization. (2024). Global antimicrobial resistance and use surveillance system (GLASS) report: 2023. Geneva: World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789240062702

Centers for Disease Control and Prevention. (2021). Antibiotic resistance threats in the United States, 2021. U.S. Department of Health and Human Services.

Giske, C. G., et al. (2011). Prevalence of antibiotic resistance in bloodstream infections: A global overview. Clinical Microbiology and Infection, 17(6), 562–569. https://doi.org/10.1111/j.1469-0691.2010.03488.x

Kontula, K. S. K., Skogberg, K., Ollgren, J., Järvinen, A., & Lyytikäinen, O. (2022). Early deaths associated with community-acquired and healthcare-associated bloodstream infections: A population-based study, Finland, 2004 to 2018. Eurosurveillance, 27(36), 2101067. https://doi.org/10.2807/1560-7917.ES.2022.27.36.2101067

Codjoe, F. and Donkor, E. (2017) Carbapenem Resistance: A Review. Medical Sciences, 6, Article No. 1. https://doi.org/10.3390/medsci6010001

กรมควบคุมโรค. (2567). รายงานสถานการณ์เชื้อดื้อยาประจำปี 2567. สำนักระบาดวิทยา กระทรวงสาธารณสุข.

Kevin B. Laupland, Felicity Edwards, Jayesh Dhanani. (2021). Determinants of research productivity during postgraduate medical education: a structured review. BMC Medical Education 21:567

Magill, S. S., O’Leary, E., Ray, S. M., et al. (2021). Antimicrobial resistance patterns in bloodstream infections: Surveillance and prevention. Clinical Infectious Diseases, 72(3), e59–e67.

Kang, L., Ma, S., Chen, M., et al. (2020) Impact on Mental Health and Perceptions of Psychological Care among Medical and Nursing Staff in Wuhan during the 2019 Novel Coronavirus Disease Outbreak: A Cross-Sectional Study. Brain, Behavior, and Immunity, 87, 11-17.

Gao, Guang, Liu, Yameng, Li, Xinshu, Feng, Zhihua, Xu, Zhiguang, Wu, Hongyan, Xu, Juntian. (2017). Seawater carbonate chemistry and copper toxicity in the green tide alga Ulva prolifera in laboratory experiment.https://doi.org/10.1594/PANGAEA.875584,

Foxman, B. (2014) Urinary Tract Infection Syndromes: Occurrence, Recurrence, Bacteriology, Risk Factors, and Disease Burden. Infectious Disease Clinics of North America, 28, 1-13.

T.A. Russo, J.R. Johnson, Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem, Microbes Infect, 5 (2003) 449-456.

Diederik van de Beek, Matthijs C Brouwer, Uwe Koedel, Emma C Wall. (2021). Community-acquired bacterial meningitis. Lancet.25;398(10306):1171-1183.

Downloads

Published

2025-12-31

How to Cite

Kongjumpa, J. . (2025). The incidence of bloodstream infections from 8 types of bacteria under surveillance in patients at Ban Mi Hospital, Lopburi Province. Journal of Environmental Education Medical and Health, 10(4), 888–899. retrieved from https://so06.tci-thaijo.org/index.php/hej/article/view/291261