Adaptation of Small Entrepreneurs in Songkhla Province In the Era of Artificial Intelligence
Main Article Content
Abstract
This research aims to study the adaptation of small entrepreneurs in Songkhla province to the age of artificial intelligence (AI). It employs a qualitative research methodology. The key interviewees are 12 small entrepreneurs in Songkhla province who have been in business for at least 3 years and continue to operate in the future AI era, representing various business types. Data was collected through in-depth interviews and analyzed using the 7S McKinsey Model framework for content analysis. The research findings reveal that most entrepreneurs have incorporated AI into their businesses, particularly in data analysis and chatbot usage, but the utilization and readiness for adaptation vary. Newly established businesses tend to adapt and use AI more extensively. In terms of strategy, most entrepreneurs already have AI strategies in place, while the rest are in the planning stages. Regarding structure, organizational adjustments to accommodate AI are still in their early stages. For systems, AI usage is diverse, focusing on data analysis, marketing, and inventory management. Shared values show that employee attitudes towards AI range from moderate to fairly positive. The style of management indicates that executives prioritize innovation and adaptation. In terms of staff and skills, most companies emphasize AI-related staff development, but employee skills are generally at a moderate level.The main challenges include lack of knowledge and skills, budget constraints, and uncertainty about return on investment. Recommendations include developing AI strategies aligned with business goals, investing in employee training, and forming partnerships with technology companies or educational institutions. For the government sector, it is suggested to develop specific AI support policies and promote AI curriculum development in collaboration with educational institutions and the private sector. This research contributes significantly to filling the knowledge gap regarding the adaptation of small businesses in the AI era within the context of Songkhla province. The research results can be applied to formulate appropriate policies and support measures to enhance the competitiveness of small businesses in the digital economy era.
Article Details
References
Acemoglu, D., & Restrepo, P. (2018). Artificial intelligence, automation and work. National Bureau of Economic Research.
AI for SMEs Association. (2024). รายงานสถานการณ์การใช้ AI ในธุรกิจขนาดเล็กและขนาดกลางในประเทศไทย ประจำปี 2024. AI for SMEs Association.
Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review, 7, 3-11.
Bughin, J., Catlin, T., Hirt, M., & Willmott, P. (2018). Why digital strategies fail. McKinsey Quarterly, 1 (1), 61-75.
Davenport, T. H., & Ronanki, R. (2018). Artificial Intelligence for the Real World. Harvard Business Review, 96 (1), 108-116.
Deloitte. (2024). State of Generative AI in the Enterprise. สืบค้นจาก https://www2. deloitte.com/ us/en/insights/topics/artificial-intelligence/state-of-generative-ai-in-the -enterprise.html
Fountaine, T., McCarthy, B., & Saleh, T. (2019). Building the AI-powered organization. Harvard Business Review, 97 (4), 62-73.
Ghobakhloo, M., & Fathi, M. (2020). Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing. Journal of Manufacturing Technology Management, 31 (1), 1-30. https://doi.org/10.1108/JMTM-11-2018-0417
Johnson, R., Smith, K., & Brown, L. (2022). Challenges in AI adoption for small businesses: A global perspective. International Journal of Small Business Management, 15 (3), 301-315.
Joungtrakul, J., & Ferry, K. N. (2021). Data management in qualitative research. Research Community and Social Development Journal, 15 (2), 1–12.
Lee, J., Suh, T., Roy, D., & Baucus, M. (2019). Emerging technology and business model innovation: The case of artificial intelligence. Journal of Open Innovation: Technology, Market, and Complexity, 5 (3), 44.
OECD. (2021). The Digital Transformation of SMEs. OECD Studies on SMEs and Entre preneurship.
Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence: Closing the gap between ambition and action. MIT Sloan Management Review, 59(1). https://webassets.bcg.com/imgsrc/ Reshaping %20 Business%20with%20Artificial%20Intelligence_tcm9-177882.pdf
Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
Siau, K., & Wang, W. (2020). Artificial intelligence (AI) ethics: Ethics of AI and ethical AI. Journal of Database Management, 31 (2), 74-87.
Tuangratanaphan, C. (2024, May 3). Retail AI Technology: No Longer Ignorable. Bangkok Business Article. https://www.bangkokbiznews.com/blogs/business
Waterman, R. H., Peters, T. J., & Phillips, J. R. (1980). Structure is not organization. Business Horizons, 23 (3), 14-26.
World Economic Forum. (2023). Unlocking AI's Potential for Small Businesses: A Global Perspective.
Zhang, Y., Li, J., & Chen, X. (2022). AI adoption in SMEs: A cross-industry analysis. Technological Forecasting and Social Change, 174, 121280.
สมิทธิ์ ลิ้มเจริญ. (2566). การยอมรับเทคโนโลยี AI ในธุรกิจขนาดเล็กและขนาดกลางในประเทศไทย. วารสารบริหารธุรกิจ, 46 (2), 45-62.
สำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์. (2564). รายงานผลการสำรวจมูลค่าพาณิชย์อิเล็กทรอนิกส์ใน
ประเทศไทย ปี 2564. Resource/publications/Value-of-e-Commerce-Survey-in-Thailand-2019.aspx
สำนักงานส่งเสริมวิสาหกิจขนาดกลางและขนาดย่อม. (2564). รายงานสถานการณ์วิสาหกิจขนาดกลางและขนาดย่อม ปี 2564.สืบค้นจาก https://bds.sme.go.th/Knowledge/Detail/2
วิภาวี สุขสถิตย์. (2566). อุปสรรคและโอกาสในการนำ AI มาใช้ในธุรกิจ SMEs ไทย. วารสารเศรษฐศาสตร์ประยุกต์, 30 (1), 78-95.