The Association between Altman Z-Score and Stock Price Volatility During the Covid-19 Pandemic

Main Article Content

Noppaworn Sawatwutthiphong
Wannee Taechoyotin

Abstract

The purpose of this study is to examine whether Altman Z-Score model proven to be able to separate firms with high bankruptcy risk from firms with strong financial positions can predict stock price volatility during Covid-19 pandemic. This study selects only service firms listed on the Stock Exchange of Thailand because these firms were negatively affected by the Covid-19 pandemic. Samples are divided into two groups i.e. high bankruptcy risk group and low bankruptcy risk group as suggested by Altman
Z-Score, then annual stock price volatility during the year 2020 of the two groups are compared using paired sample T-test and regression analysis. The results show empirical evidence that the high bankruptcy risk group has statistically significantly higher stock price volatility than the low bankruptcy risk group. The return on equity (ROE) of the two groups are statistically different, that is the high bankruptcy risk group has a negative ROE while the low bankruptcy risk group has a positive ROE. Moreover, during Covid-19 pandemic which represents uncertain circumstances, investors seem to put more emphasis on firms’ liquidity and solvency than profitability.

Article Details

How to Cite
Sawatwutthiphong, N., & Taechoyotin, W. (2024). The Association between Altman Z-Score and Stock Price Volatility During the Covid-19 Pandemic. RMUTP Journal of Business and Innovation Management, 3(2), 51–65. Retrieved from https://so06.tci-thaijo.org/index.php/RMUTP_JBI/article/view/275824
Section
Research Articles

References

ชยาภรณ์ มงคลเสรีชัย. (2560). การวิเคราะห์ความล้มเหลวทางการเงินของบริษัทที่จดทะเบียนในตลาดหลักทรัพย์แห่งประเทศไทย กรณีศึกษากลุ่มอุตสาหกรรมยานยนต์. วารสาร มจร สังคมศาสตร์ปริทรรศน์. 6, 55-68.

ประนอม คำผา. (2565). การศึกษาความแม่นยำของตัวแบบ Altman’s EM-Score Model และการพยากรณ์โอกาสเกิดความล้มเหลวทางการเงินของบริษัทจดทะเบียนในตลาดหลักทรัพย์แห่งประเทศไทย. วารสารสภาวิชาชีพบัญชี. 4(3), 26-43.

ประเสริฐ ลีฬหาวาสน์ และมนวิกา ผดุงสิทธิ์. (2552). การพยากรณ์ภาวะล้มเหลวทางธุรกิจจากข้อมูลทางบัญชี. วารสารวิชาชีพบัญชี 13, 65-82.

Allen, D. & Rachim, V. (1996). Dividend policy and stock price volatility: Australian evidence. Applied Financial Economics, 6(2), 175-188.

Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23, 589-609.

Altman, E. (1983). Corporate financial distress. A complete guide to predicting, avoiding, and dealing with bankruptcy. John Wiley and Sons.

Altman, E., Hartzell, J., & Peck, M. (1998). Emerging market corporate bonds — a scoring system. In: Levich, R.M. (eds) Emerging Market Capital Flows. The New York University Salomon Center Series on Financial Markets and Institutions, vol 2. Springer, Boston, MA.

Altman, E., Iwanicz-Drozdowska, M., Laitinen, E., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z-Score Model. Journal of International Financial Management & Accounting. 28(2), 131-171.

Altman, E. (2018). Applications of distress prediction models: what have we learned after 50 years from the Z-Score Models?. International Journal of Financial Studies, 6(3), 1-15.

Andreou, C., Andreou, P., & Lambertides, N. (2021). Financial distress risk and stock price crashes. Journal of Corporate Finance, 67, 1-29.

Berry W. & Feldman, S. (1985). Multiple regression in practice (quantitative applications in the social sciences). SAGE Publications, Thousand Oaks, CA.

Brogaard, J., Nguyen, T., Putnins, T., & Wu, E. (2022). What moves stock prices? The Roles of news, noise, and information. The Review of Financial Studies, 35(9), 4341-4386.

Campbell, J., Hilscher, J. & Szilagyi, J. (2008). In search of distress risk. The Journal of Finance. 63(6), 2899–2939.

Hair, J., Anderson, R., Tatham, R. & Black, W. (1998). Multivariate data analysis. (5th Ed.). Prentice Hall, New Jersey.

Hussainey, K, Mgbame, C., & Chijoke-Mgbame, A. (2011). Dividend policy and share price volatility: UK evidence. The Journal of Risk Finance. 12(1), 57-68.

Lieberman, M. & Morris, J. (2012). The precise effect of multicollinearity on classification prediction. Multiple Linear Regression Viewpoints. 40(1), 5-10.

Özyeşil, M. (2020). A relationship between Altman’s Z Scores and stock price performance: A review on listed companies in Best-30 Index. https://www.internationaljournalssrg.org/IJEMS/2020/Volume7-Issue2/IJEMS-V7I2P125.pdf

Poudel, R., Prasad, D., & Jain, R. (2020). The Altman ‘Z’ is “50” and still young: bankruptcy prediction and stock market reaction due to sudden exogenous shock. Journal of Accounting and Finance. 20(2), 65-73.

Shen, J. (2020). Distress risk and stock return on equity REITs. Journal of Real Estate Finance and Economics. 62, 455-480. https://doi.org/10.1007/s11146-020-09756-7

Smith, S. (2014). Stoxx unveils “strong balance sheet” indices based on Altman Z-Score | ETF Strategy - ETF Strategy. https://www.etfstrategy.com/stoxx-unveils-strong-balance-sheet-indices-based-on-altman-z-score-91245/

Suryana, N. (2020). Analysis of Stock Prices Affected by Current Ratio. Open access 1, 190-197.

Syed, A. & Umara, N. (2016). Stock price volatility and role of dividend policy: empirical evidence from Pakistan. International Journal of Economics and Financial Issues 6(2), 461-472.

Wei, S. & Zhang, C. (2006). Why did individual stocks become more volatile? The Journal of Business. 79(1), 259-292.

Zulkifli, Z. (2024). Debt to equity ratio moderating dividend payout ratio on stock price volatility. International Journal of Business, Law, and Education. 5(1), 354-364.