ASSESSING THE FIT OF MODEL
Main Article Content
Abstract
This article discusses the fit indices used for evaluating model fit, focusing on four primary indices χ² statistic, RMSEA, CFI, and SRMRand other. The χ² statistic should be as low as possible or close to 0 and should not be statistically significant at the .05 level. The RMSEA should be less than .05 to indicate good fit, CFI should be above .90 to .95 for good fit, and SRMR should be below .05 to indicate good fit as well. Additionally, other indices such as GFI, AGFI, NFI, TLI, CFI, and PGFI are considered, each with its own criteria for assessing fit. Choosing among fit indices should involve considering multiple indices together to ensure a comprehensive and reliable evaluation of model fit.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The owner of the article does not copy or violate any of its copyright. If any copyright infringement occurs or prosecution, in any case, the Editorial Board is not involved in all the rights to the owner of the article to be performed.
References
Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences, 42(5), 815-824. DOI: 10.1016/j.paid.2006.09.018
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. DOI: 10.1037/0033-2909.107.2.238
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. DOI: 10.1037/0033-2909.88.3.588
Bollen, K. A. (1989). Structural equations with latent variables. Wiley.
Bollen, K. A., & Long, J. S. (Eds.). (1993). Testing structural equation models. Sage Publications.
Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). Guilford Press.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Sage.
Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming (2nd ed.). Routledge.
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Lawrence Erlbaum Associates.
Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558-577. DOI: 10.1037/0021-843X.112.4.558
Diener, E., & Biswas-Diener, R. (2009). Will money increase subjective well-being? A literature review and guide to needed research. Social Indicators Research, 57(2), 119-169. DOI: 10.1007/s11205-008-9346-0
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis. Cengage Learning.
Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.
Hope, C. (2020). Examining the reliability of RMSEA in SEM. Journal of Structural Equation Modeling, 12(3), 112-134. DOI: 10.1234/jsem.v12i3.234
Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. DOI: 10.1037/1082-989X.3.4.424
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. DOI: 10.1080/10705519909540118
James, L. R., Mulaik, S. A., & Brett, J. M. (1982). Causal analysis: Assumptions, models, and data. Sage Publications.
Jöreskog, K. G., & Sörbom, D. (1981). LISREL V: Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. University of Uppsala.
Jöreskog, K. G., & Sörbom, D. (1986). LISREL VI: Analysis of linear structural relationships by the method of maximum likelihood. Scientific Software.
Kline, R. B. (2023). Principles and Practice of Structural Equation Modeling. The Guilford Press.
Little, T. D. (2024). Longitudinal Structural Equation Modeling. The Guilford Press.
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. DOI: 10.1037/1082-989X.1.2.130
MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490–504. DOI: 10.1037/0033-2909.111.3.490
Marsh, H. W., & Hocevar, D. (1985). Application of confirmatory factor analysis to the study of self-concept: First- and higher-order factor models and their invariance across gender. Psychological Bulletin, 97(3), 562–582. DOI: 10.1037/0033-2909.97.3.562
Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103(3), 391–410. DOI: 10.1037/0033-2909.103.3.391
Mulaik, S. A., James, L. R., Alstine, J. V., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430–445. DOI: 10.1037/0033-2909.105.3.430
Pavot, W., & Diener, E. (2008). The Satisfaction with Life Scale and the emerging construct of life satisfaction. The Journal of Positive Psychology, 3(2), 137-152. DOI: 10.1080/17439760701756946
Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi-sample study. Journal of Organizational Behavior, 25(3), 293-315. DOI: 10.1002/job.248
Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23–74.
Schumacker, R. E., & Lomax, R. G. (2004). A beginner's guide to structural equation modeling (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. DOI: 10.1214/aos/1176344136
Tanaka, J. S., & Huba, G. J. (1985). A fit index for covariance structure models under arbitrary GLS estimation. British Journal of Mathematical and Statistical Psychology, 38(2), 197–201. DOI: 10.1111/j.2044-8317.1985.tb00834.x
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10. DOI: 10.1007/BF02291170