Examining Organizational and Human Drivers of Artificial Intelligence Adoption for Enhancing Operational Performance in Thai Technology Enterprises
Main Article Content
Abstract
Background/problem: The rapid advancement of artificial intelligence (AI) has transformed business operations worldwide, yet its adoption in Thailand’s technology sector remains influenced by various organizational and external factors.
Objective/ purpose: This study examines the influence of artificial intelligence (AI) adoption on operational performance within technology firms in Thailand. Six hypotheses are tested to assess the influence of competitive pressure, external support, top management commitment, employee adaptability, and organizational readiness on AI adoption. In turn, the effect of AI adoption on operational performance is examined.
Design and Methodology: The study surveyed 450 employees in technology companies across Thailand. Sampling followed a three-step process: judgmental sampling to select qualified participants, followed by convenience and snowball sampling. The validity test was conducted to get experts’ rating with Item-Objective Congruence (IOC) index. Additionally, a pilot test with 50 participants confirmed the reliability of the survey instrument using the Cronbach's Alpha. The data were analyzed by using Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM).
Results: The findings indicate that competitive pressure, top management commitment, and organizational readiness significantly influence AI adoption, while external support and employee adaptability do not. AI adoption, in turn, strongly affects operational performance.
Conclusion and Implications: This study provides valuable knowledge for technology enterprises in Thailand, emphasizing the importance of competitive awareness, strong management commitment, and organizational readiness to successfully adopt AI and optimize operational performance.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abdul Hameed, M., Counsell, S., & Swift, S. (2012). A meta-analysis of relationships between organizational characteristics and IT innovation adoption in organizations. Information & Management, 49(5), 218–232. https://doi.org/10.1016/j.im.2012.05.002 DOI: https://doi.org/10.1016/j.im.2012.05.002
Alshaer, M. (2023). A systematic review of the use of artificial intelligence in managing innovation in e-government organizations worldwide. International Journal of Technology and Systems, 8, 65-81. https://doi.org/10.47604/ijts.2164 DOI: https://doi.org/10.47604/ijts.2164
Arbuckle, J. (1995). AMOS: Analysis of moment structures user’s guide. Small Waters.
Baabdullah, A. M., Alalwan, A. A., Slade, E. L., Raman, R., & Khatatneh, K. F. (2021). SMEs and artificial intelligence (AI): Antecedents and consequences of AI-based B2B practices. Industrial Marketing Management, 98, 255–270. https://doi.org/10.1016/j.indmarman.2021.05.002 DOI: https://doi.org/10.1016/j.indmarman.2021.09.003
Badghish, S., & Soomro, Y. A. (2024). Artificial Intelligence Adoption by SMEs to Achieve Sustainable Business Performance: Application of Technology–Organization–Environment Framework. Sustainability, 16(5), 1864. https://doi.org/10.3390/su16051864 DOI: https://doi.org/10.3390/su16051864
Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science, 40(1), 8-34. https://doi.org/10.1007/s11747-011-0278-x DOI: https://doi.org/10.1007/s11747-011-0278-x
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Sage.
Brynjolfsson, E., & McAfee, A. (2017). The Business of Artificial Intelligence. Harvard Business Review, 7, 3-11.
Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming (3rd ed.). Routledge. DOI: https://doi.org/10.4324/9781315757421
Çınar, Z. M., Zeeshan, Q., & Korhan, O. (2021). A framework for Industry 4.0 readiness and maturity of smart manufacturing enterprises: A case study. Sustainability, 13(12), 6659. https://doi.org/10.3390/su13126659 DOI: https://doi.org/10.3390/su13126659
Dandhanin, C. (2021). Exploring the barriers to adoption of artificial intelligence technology in large organizations [Thematic paper, Master of Management]. College of Management, Mahidol University.
Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24-42. https://doi.org/10.1007/s11747-019-00696-0 DOI: https://doi.org/10.1007/s11747-019-00696-0
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
Domenek, A. C., Moori, R. G., & Vitorino Filho, V. A. (2022). The mediating effect of operational capabilities on operational performance. Revista de Gestão, 29(4), 350-366. https://doi.org/10.1108/REGE-01-2021-0016. DOI: https://doi.org/10.1108/REGE-01-2021-0016
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data–evolution, challenges, and research agenda. International Journal of Information Management, 48, 63-71. DOI: https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., ... Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.101994 DOI: https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312 DOI: https://doi.org/10.1177/002224378101800104
Ganlin, P., Qamruzzaman, M. D., Mehta, A. M., Naqvi, F. N., & Karim, S. (2021). Innovative finance, technological adaptation, and SMEs sustainability: The mediating role of government support during the COVID-19 pandemic. Sustainability, 13(16). https://doi.org/10.3390/su13169218 DOI: https://doi.org/10.3390/su13169218
Garg, P., & Agarwal, D. (2014). Critical success factors for ERP implementation in a Fortis hospital: an empirical investigation. Journal of Enterprise Information Management, 27(4), 402-423. https://doi.org/10.1108/JEIM-06-2012-0027 DOI: https://doi.org/10.1108/JEIM-06-2012-0027
Gunasekaran, A., & Ngai, E. (2012). The future of operations management: An outlook and analysis. International Journal of Production Economics, 135(2), 687–701. https://doi.org/10.1016/j.ijpe.2011.11.002 DOI: https://doi.org/10.1016/j.ijpe.2011.11.002
Hair, J., Black, W., Babin, B., Anderson, R., & Tatham, R. (2006). Multivariate Data Analysis (6th ed.). Pearson Education.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Prentice Hall.
Hamid, R. (2022). The role of employees’ technology readiness, job meaningfulness, and proactive personality in adaptive performance. Sustainability, 14, 15696. https://doi.org/10.3390/su142315696 DOI: https://doi.org/10.3390/su142315696
Harter, J. K., Schmidt, F. L., & Hayes, T. L. (2002). Business-unit-level relationships between employee satisfaction, employee engagement, and business outcomes: A meta-analysis. Journal of Applied Psychology, 87(2), 268-279. https://doi.org/10.1037/0021-9010.87.2.268 DOI: https://doi.org/10.1037//0021-9010.87.2.268
Hradecky, D., Kennell, J., Cai, W., & Davidson, R. (2022). Organizational readiness to adopt artificial intelligence in the exhibition sector in Western Europe. International Journal of Information Management, 65, Article 102497. https://doi.org/10.1016/j.ijinfomgt.2022.102497 DOI: https://doi.org/10.1016/j.ijinfomgt.2022.102497
Ingalagi, S., Mutkekar, R., & Kulkarni, P. (2021). Artificial Intelligence (AI) adaptation: Analysis of determinants among Small to Medium-sized Enterprises (SME’s). IOP Conference Series: Materials Science and Engineering, 1049. https://doi.org/10.1088/1757-899X/1049/1/012017 DOI: https://doi.org/10.1088/1757-899X/1049/1/012017
Jöhnk, J., Weißert, M., & Wyrtki, K. (2021). Ready or not, AI comes—An interview study of organizational AI readiness factors. Business & Information Systems Engineering, 63(1), 5-20. https://doi.org/10.1007/s12599-020-00676-7 DOI: https://doi.org/10.1007/s12599-020-00676-7
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). Guilford Press.
Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
Lada, S., Chekima, B., Karim, M. R. A., Fabeil, N. F., Ayub, M. S., Amirul, S. M., Ansar, R., Bouteraa, M., Fook, L. M., & Zaki, H. O. (2023). Determining factors related to artificial intelligence (AI) adoption among Malaysia's small and medium-sized businesses. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100144. https://doi.org/10.1016/j.joitmc.2023.100144 DOI: https://doi.org/10.1016/j.joitmc.2023.100144
Mavlutova, I., Spilbergs, A., Verdenhofs, A., Natrins, A., Arefjevs, I., & Volkova, T. (2022). Digital transformation as a driver of the financial sector sustainable development: An impact on financial inclusion and operational efficiency. Sustainability, 15(1), 207. https://doi.org/10.3390/su15010207 DOI: https://doi.org/10.3390/su15010207
Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434 DOI: https://doi.org/10.1016/j.im.2021.103434
Neely, A. (2005). The evolution of performance measurement research: Developments in the last decade and a research agenda for the next. International Journal of Operations & Production Management, 25(12), 1264-1277. https://doi.org/10.1108/01409170510633648 DOI: https://doi.org/10.1108/01443570510633648
Ngai, E. W. T., Law, C. C. H., & Wat, F. K. T. (2008). Examining the critical success factors in the adoption of enterprise resource planning. Computers in Industry, 59(6), 548-564. DOI: https://doi.org/10.1016/j.compind.2007.12.001
Noonpakdee, W. (2024). User Adoption of Generative AI for Government Information Services in Thailand. Rajapark Journal, 18(60), 1–20.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). McGraw-Hill.
Peifer, Y., Jeske, T., & Hille, S. (2022). Artificial intelligence and its impact on leaders and leadership. Procedia Computer Science, 200, 1024-1030. https://doi.org/10.1016/j.procs.2022.01.301 DOI: https://doi.org/10.1016/j.procs.2022.01.301
Peretz-Andersson, E., Tabares, S., Mikalef, P., & Parida, V. (2024). Artificial intelligence implementation in manufacturing SMEs: A resource orchestration approach. International Journal of Information Management, 77, 102781. https://doi.org/10.1016/j.ijinfomgt.2024.102781 DOI: https://doi.org/10.1016/j.ijinfomgt.2024.102781
Phichitchaisopa, N., & Naenna, T. (2013). Factors affecting the adoption of healthcare information technology. EXCLI Journal, 12, 413–436. https://doi.org/10.17179/excli2013-116
Phongsatha, T. (2024). Every coin has two sides: Navigating factors of generative pre-trained transformer adoption intentions among educators in Thailand. Pakistan Journal of Life and Social Sciences, 22(1), 5750-5763. https://doi.org/10.57239/PJLSS-2024-22.1.00424 DOI: https://doi.org/10.57239/PJLSS-2024-22.1.00424
Porter, M. E. (1980). Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free Press.
Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming competition. Harvard Business Review, 92(11), 64-88.
Rahman, M., Ismail, I., Bahri, S., & Rahman, M. K. (2022). An Empirical Analysis of Cashless Payment Systems for Business Transactions. Journal of Open Innovation: Technology, Market, and Complexity, 8(4), 213. https://doi.org/10.3390/joitmc8040213 DOI: https://doi.org/10.3390/joitmc8040213
Reiman, A., Kaivo-oja, J., Parviainen, E., Takala, E.-P., & Lauraeus, T. (2024). Human work in the shift to Industry 4.0: A road map to the management of technological changes in manufacturing. International Journal of Production Research, 62(16), 5613–5630. https://doi.org/10.1080/00207543.2024.2160621 DOI: https://doi.org/10.1080/00207543.2023.2291814
Rovinelli, R. J., & Hambleton, R. K. (1977). On the use of content specialists in the assessment of criterion-referenced test item validity. Tijdschrift voor Onderwijsresearch, 2(2), 49–60.
Shahadat, M. M., Nekmahmud Argon, M., Ebrahimi, P., & Maria, F. F. (2023). Digital Technology Adoption in SMEs: What Technological, Environmental and Organizational Factors Influence in Emerging Countries?. Global Business Review, 1-27. https://doi.org/10.1177/09721509221137199 DOI: https://doi.org/10.1177/09721509221137199
Sharma, M., Luthra, S., Joshi, S., & Kumar, A. (2022). Implementing challenges of artificial intelligence: Evidence from the public manufacturing sector of an emerging economy. Government Information Quarterly, 39(4), 101624. https://doi.org/10.1016/j.giq.2021.101624 DOI: https://doi.org/10.1016/j.giq.2021.101624
Sony, M., & Mekoth, N. (2022). Employee adaptability skills for Industry 4.0 success: A road map. Production & Manufacturing Research, 10, 24-41. https://doi.org/10.1080/21693277.2022.2035281 DOI: https://doi.org/10.1080/21693277.2022.2035281
Sun, W., Dedahanov, A. T., Li, W. P., & Shin, H. Y. (2024). Sanctions and opportunities: Factors affecting China's high-tech SMEs adoption of artificial intelligence computing leasing business. Heliyon, 10(16), e36620. https://doi.org/10.1016/j.heliyon.2024.e3662 DOI: https://doi.org/10.1016/j.heliyon.2024.e36620
Tornatzky, L. G., & Fleischer, M. (1990). The Processes of Technological Innovation. Lexington Books.
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. DOI: https://doi.org/10.2307/41410412
Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118-144. https://doi.org/10.1016/j.jsis.2019.01.003 DOI: https://doi.org/10.1016/j.jsis.2019.01.003
Xu, H., Liu, J., Xu, X., Chen, J., & Yue, X. (2024). The impact of AI technology adoption on operational decision-making in competitive heterogeneous ports. Transportation Research Part E: Logistics and Transportation Review, 183, 103428. https://doi.org/10.1016/j.tre.2024.103428 DOI: https://doi.org/10.1016/j.tre.2024.103428
Yang, J., Blount, Y., & Amrollahi, A. (2024). Artificial intelligence adoption in a professional service industry: A multiple case study. Technological Forecasting and Social Change, 201, 123251. https://doi.org/10.1016/j.techfore.2024.123251 DOI: https://doi.org/10.1016/j.techfore.2024.123251
Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in different countries: A technology diffusion perspective on e-business. Management Science, 52(10), 1557-1576. DOI: https://doi.org/10.1287/mnsc.1050.0487