Intrinsic and Extrinsic Motivation for University Staff Satisfaction: Confirmatory Composite Analysis and Confirmatory Factor Analysis
Main Article Content
Abstract
The hierarchical construction model (HCM) may be used to minimize colinear formative indicators while increasing the statistical power of content-specific constructs. However, the present research discovered a strong correlation between intrinsic and extrinsic motivation and job satisfaction, indicating a lack of discriminating validity that limits the use of HCM. Thus, this research condensed data on job satisfaction for university staff by comparing a consistent partial least square (PLSc) model to a composite model without utilizing higher-order constructs. The sample consisted of 392 individuals working in a Thai university with a total of 1,042 staff. The results show that the composite model performs better than a consistent partial least square, generating bias. Intrinsic motivation is both a direct and indirect effect on job satisfaction. Extrinsic motivation is a complementary model mediator effect. The limitation of the study is an inherent relation between intrinsic and extrinsic motivation and indicators of job satisfaction, which can cause a common factor model bias. Further studies where the partial least square structural equation model (PLS-SEM) is compared early with the covariance-based structural equation model (CB-SEM) are needed, particularly studies using composite indicators. PLS-SEM can now be used to measure both confirmatory composite analysis and confirmatory factor analysis, while CB-SEM can only estimate confirmatory factor analysis. The method of condensing data may help eliminate discriminant validity issues.
Article Details
Copyright: CC BY-NC-ND 4.0
References
Aguirre-Urreta, M. I., Rönkkö, M., & Marakas, G. M. (2016). Omission of causal indicators: Consequences and implications for measurement. Measurement: Interdisciplinary Research and Perspectives, 14(3), 75-97.
Antonakis, J., Bendahan, S., Jacquart, P., & Lalive, R. (2010). On making causal claims: A review and recommendations. The Leadership Quarterly, 21(6), 1086-1120.
Bainter, S. A., & Bollen, K. A. (2015). Moving forward in the debate on causal indicators: Rejoinder to comments. Measurement: Interdisciplinary Research & Perspectives, 13(1), 63-74.
Becker, J. M., Klein, K., & Wetzels, M. (2012). Hierarchical latent variable models in PLS-SEM: Guidelines for using reflective-formative type models. Long Range Planning, 45(5-6), 359-394.
Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103-168.
Burt, R. S. (1976). Interpretational confounding of unobserved variables in structural equation models. Sociological Methods & Research, 5(1), 3-52.
Campbell, J. P., & Pritchard, R. D. (1976). Motivation theory in industrial and organizational psychology. In Dunnette, M. D. (Ed.). Handbook of industrial and organizational psychology. Chicago: Rand McNally.
Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict performance: A 40-year meta-analysis. Psychological Bulletin, 140(4), 980-1008.
Cepeda, G., Nitzl, C., & Roldán, J. L. (2017). Mediation analyses in partial least squares structural equation modeling: Guidelines and empirical examples (pp. 173-195). In Latan, H. & Noonan, R. (Eds.). Partial least squares path modeling: Basic concepts, methodological issues and applications. Switzerland: Springer.
Cheah, J., Ting, H., Ramayah, T., Menon, M. A., Cham, T.H., & Ciavolono, E. (2019). A comparison of five reflective-formative estimation approaches: Reconsideration and recommendations for tourism research. Quality & Quantity, 53, 1421-1458.
Chin, W. W. (1998). The partial least squares approach for structural equation modeling (p. 295-336). In Marcoulides, G. A. (Ed.). Methodology for business and management. Modern methods for business research. United States: Lawrence Erlbaum Associates Publishers.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.
Crocetta, C. Antonucci, L., Cataldo, R. Galasso, R. Grassia, R. G., Lauro, C. N., & Marino, M. (2021). Higher-order PLS-PM approach for different types of constructs. Social Indicators Research, 154, 725-754.
Deci, E. L. (1972). Intrinsic motivation, extrinsic reinforcement, and inequity. Journal of Personality and Social Psychology, 22(1), 113-120.
Deci, E. L., & Ryan, R. M. (1980). The empirical exploration of intrinsic motivational processes. Advances in Experimental Social Psychology, 13, 39-80.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behaviour. New York: Plenum.
Deci, E. L., & Ryan, R. M. (2002). Overview of self-determination theory: An organismic-dialectical perspective (pp. 3-33). In Deci, E. L., & Ryan, R. M. (Eds.). Handbook of self-determination research. United States: University of Rochester Press.
Deci, E. L., & Ryan, R. M. (2008). Self-determination theory: A macrotheory of human motivation, development, and health. Canadian Psychology/Psychologie Canadienne, 49(3), 182-185.
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627-668.
Demming, C. L., Jahn, S., & Boztug, Y. (2017). Conducting mediation analysis in marketing research. Marketing ZFP, 39(3), 76-98.
Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(2), 269-277.
Dijkstra, T. K., & Henseler, J. (2011). Linear indices in nonlinear structural equation models: Best-fitting proper indices and other composites. Quality & Quantity, 45(6), 1505-1518.
Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81, 10-23.
Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297-316.
Eisenberger, R., Pierce, W. D., & Cameron, J. (1999) Effects of reward on intrinsic motivation-negative, neutral, and positive: Comment on Deci, Koestner, and Ryan. Psychological Bulletin, 125(6), 677-691.
Farrell, A. M. (2010). Insufficient discriminant validity: A comment on Bove, Perva, Beatty, and Shiu (2009). Journal of Business Research, 63, 324-327.
Farrell, A. M., & Rudd, J. M. (2009). Factor analysis and discriminant validity: A brief review of some practical issues (pp. 1-9). In Tojib, D. (Ed.). Australia-New Zealand marketing academy conference. Australia: Australia-New Zealand Marketing Academy.
Feldman, T. S. (1985). Applied mathematics and the quantification of experimental physics: The example of barometric hypsometry. Historical Studies in the Physical Sciences, 15(2), 127-195.
Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440-452.
Fortier, M. S., Vallerand, R. J., & Guay, F. (1995). A cademic motivation and school performance; toward a structural moclel. Contemporary Educational Psychology, 20, 257-274.
Frey, B. S., & Jegen, R. (2001). Motivation crowding theory. Journal of Economic Surveys, 15(5), 589-611.
Furnham, A., Forde, L., & Ferrari, K. (1999). Personality and work motivation. Personality and Individual Differences, 26, 1035-1040.
Gagné, M., & Deci, E. L. (2005). Self-determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331-362.
Gagné, M., Forest, J., Gilbert, M. H., Aubé, C., Morin, E., & Malorni, A. (2010). The motivation at work scale: Validation evidence in two languages. Educational and Psychological Measurement, 70(4), 628-646.
Garbers, Y., & Konradt, U. (2014). The effect of financial incentives on performance: A quantitative review of individual and team-based financial incentives. Journal of Occupational and Organizational Psychology, 87(1), 102-137.
Gazioglu, S., & Tansel, A. (2006). Job satisfaction in Britain: Individual and job-related factors. Applied Economics, 38(10), 1163-1171.
George, J. M., & Jones, G. R. (2008). Understanding and managing organizational behavior. (5th eds.). Upper Saddle River, New Jersey: Pearson Prentice Hall.
Guay, F., Chanal, J., Ratelle, C. F., Marsh, H. W., Larose, S., & Boivin, M. (2010). Intrinsic, identified, and controlled types of motivation for school subjects in young elementary school children. British Journal of Educational Psychology, 80(4), 711-735.
Hair, J. F. J., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective. (7th eds.). Upper Saddle River, England: Pearson Education.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed, a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: rigorous applications, better results, and higher acceptance. Long Range Planning, 46, 1-12.
Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). Advanced issues in partial least squares structural equation modeling. Thousand Oaks, CA: Sage Publications.
Hair, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101-110.
Hendijani, R., Bischak, D. P., Arvai, J., & Dugar, S. (2016). Intrinsic motivation, external reward, and their effect on overall motivation and performance. Human Performance, 29(4), 251-274.
Henseler, J. (2017). Bridging design and behavioral research with variance-based structural equation modeling. Journal of Advertising, 46(1), 178-192.
Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., & Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182-209.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Henseler, J., Sarstedt, M., & Ringle, C. M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405-431.
Henseler, J., Wilson, B., Götz, O., & Hautvast, C. (2007): Investigating the moderating role of fit on sports sponsorship and brand equity. International Journal of Sports Marketing & Sponsorship, 8(4), 321-329.
Herzberg, F. (2007). The motivation to work. (2nd eds.) New York: Wiley.
Herzberg, F., Mausner, B., & Snydermann, B. (1959). The motivation to work. New York: Wiley.
Hu, L. T., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
Hubona, G. S., Schuberth, F., & Henseler, J. (2021). A clarification of confirmatory composite analysis (CCA). International Journal of Information Management, 61, 102399.
Hung, S. Y., Durcikova, A., Lai, H. M., & Lin, W. M. (2011). The influence of intrinsic and extrinsic motivation on individuals' knowledge sharing behavior. International Journal of Human-Computer Studies, 69(6), 415-427.
Huxley, P., Evans, S., Gately, C., Webber, M., Mears, A., Pajak, S., Kendall, T., Medina, J., & Katona, C. (2005). Stress and pressure in mental health social work: The worker speaks. British Journal of Social Work, 35(7), 1063-1079.
Jessen, J. T. (2010). Job satisfaction and social rewards in the social services. Journal of Comparative Social Work, 1, 1-18.
Jovanovic, D., & Matejevic, M. (2014). Relationship between rewards and intrinsic motivation for learning-researches review. Procedia - Social and Behavioral Sciences, 149, 456-460.
Kalleberg, A. L. (1997). Work, Values, and job rewards: A theory of job satisfaction. American Sociological Review, 42(1), 124-143.
Kastrinos, N. (2001). Contribution of socio-economic research to the benchmarking of RTD policies in Europe’. Science and Public Policy, 28(4), 238-246.
Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration, 11(4), 1-10.
Kock, N. (2017). Which is the best way to measure job performance: Self-perceptions or official supervisor evaluations? International Journal of e-Collaboration, 13(2), 1-9.
Kuvaas, B., Buch, R., Weibel, A., Dysvik, A., & Nerstad, C. G. (2017). Do intrinsic and extrinsic motivation relate differently to employee outcomes? Journal of Economic Psychology, 61, 244-258.
Lemyre, P. N., Treasure, D. C., & Roberts, G. C. (2006). Influence of variability in motivation and affect on elite athlete burnout susceptibility. Journal of Sport and Exercise Psychology, 28(1), 32-48.
Lepper, M. R., Greene, D., & Nisbett, R. E. (1973). Undermining children’s intrinsic interest with extrinsic reward: A test of the “overjustification” hypothesis. Journal of Personality and Social Psychology, 28(1), 129-137.
Machado-Taylor, M. L., Meira Soares, V., Ferreira, J. B., & Gouveia, O. M. R. (2011). What factors of satisfaction and motivation are affecting the development of the academic career in Portuguese higher education institutions? Revista de Administração Pública, 45(1), 33-44.
Makki, A., & Abid, M. (2017). Influence of intrinsic and extrinsic motivation on employee’s task performance. Studies in Asian Social Science, 4(1), 38-43.
Martínez Avila, M., García-Machado, J. J., & Eréndira Fierro, M. (2021). A multiple full mediating effect in a PLS hierarchical component model: Application to the collaborative public management. Mathematics, 9(1910), 1-19.
McCullagh, P. (2005). Sport and exercise psychology Lecture. East Bay, USA: Cal State University
Nitzl, C., Roldán Salgueiro, J. L., & Cepeda-Carrión, G. (2016). Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models. Industrial Management and Data Systems, 116(9), 1849-1864.
Oshagbemi, T. (1999). Overall job satisfaction: How good are single versus multiple-item measures? Journal of Managerial Psychology, 15(5-6), 388-403.
Pearson, K. (1901). Principal components analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(2), 559-572.
Polites, G. L., Roberts, N., & Thatcher, J. (2012). Conceptualizing models using multidimensional constructs: A review and guidelines for their use. European Journal of Information Systems, 21(1), 22-48.
Raso, C. (2012). Job performance motivation of personnel at Nakorn Sawan Rajabhat University (Master’s thesis). Bangkok, Thailand: Srinakharinwirot University.
Rigdon, E. E. (2014). Rethinking partial least squares path modeling: Breaking chains and forging ahead. Long-Range Planning, 47(3), 161-167.
Rigdon, E. E. (2016). Choosing PLS path modeling as an analytical method in European management research: A realist perspective. European Management Journal, 34(6), 598-605.
Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On comparing results from CB-SEM and PLS-SEM: five perspectives and five recommendations. Marketing ZFP, 39(3), 4-16.
Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the use of PLS-SEM in “MIS Quarterly”. MIS Quarterly, 36, III-XIV.
Robbins, S., Judge, T. A., & Sanghi, S. (2009). Motivation concepts. Organizational behaviour. (13th eds.). India: Dorling Kindersley Pvt.
Rönkkö, M., & Evermann, J. (2013). A critical examination of common beliefs about partial least squares path modeling. Organizational Research Methods, 16(3), 425-448.
Rönkkö, M., McIntosh, C. N., & Antonakis, J. (2015). On the adoption of partial least squares in psychological research: Caveat emptor. Personality and Individual Differences, 87, 76-84.
Rönkkö, M., McIntosh, C. N., Antonakis, J., & Edwards, J. R. (2016). Partial least squares path modeling: Time for some serious second thoughts. Journal of Operations Management, 47, 9-27.
Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and wellbeing. American Psychologist, 55(1), 68-78.
Sarstedt, M., Hair Jr, J. F., Cheah, J. H., Becker, J. M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197-211.
Sarstedt, M., Hair Jr, J. F., Nitzl, C., Ringle, C. M., & Howard, M. C. (2020). Beyond a tandem analysis of SEM and PROCESS: Use of PLS-SEM for mediation analyses! International Journal of Market Research, 62(3), 288-299.
Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Partial least squares path modeling using ordinal categorical indicators. Quality & Quantity, 52(1), 9-35.
Schuberth, F., Rademaker, M. E., & Henseler, J. (2020). Estimating and assessing second- order constructs using PLS-PM: The case of composites of composites. Industrial Management & Data Systems, 120, 2211-2241.
Spector, P. E. (1997). Job satisfaction: Application, assessment, causes, and consequences. Thousand Oaks, CA: Sage Publication.
Steers, R. M., & Porter, L. W. (1992). Motivation and work behavior. New York: McGraw Hill.
Teye, E. T., Abosi, B. A., Tetteh, A. N., Ntim, S. Y., Teye, A., Aseidua-Ayeh, O. L., & Dubi, S. A. (2019). Linking motivation and alliance to perceived ambidexterity outcomes at the individual level in academia. Journal of Applied Research in Higher Education, 11(4), 664-685.
Vallerand, R. J. (2001). A hierarchical model of intrinsic and extrinsic motivation in sport and exercise (pp. 263-319). In Roberts, G. C. (Ed.). Advances in motivation in sport and exercise. United States: Champaign, IL: Human Kinetics.
Vallerand, R. J., Pelletier, L. G., Blais, M. R., Briere, N. M., Senecal, C., & Vallieres, E. F. (1992). The academic motivation scale: A measure of intrinsic, extrinsic, and amotivation in education. Educational and Psychological Measurement, 52(4), 1003-1017.
van Riel, A. C., Henseler, J., Kemény, I., & Sasovova, Z. (2017). Estimating hierarchical constructs using consistent partial least squares. Industrial Management & Data Systems, 117(3), 459-477.
Wilson, B., & Henseler, J. (2007). Modeling reflective higher-order constructs using three approaches with PLS path modeling: A Monte Carlo comparison. In Thyne, M., & Deans, K. R. (Eds), ANZMAC 2007: Conference Proceedings and Refereed Papers. Dunedin: ANZMAC.
Wold, H. (1982). Soft modelling, system under indirect observation, II. New York: North-Holland.
Zamarripa, J., Castillo, I., Baños, R., Delgado, M., & Álvarez, O. (2018). Motivational regulations across the stages of change for exercise in the general population of Monterrey (Mexico). Frontiers in Psychology, 9, 2368.