Should A Rule of Thumb be used to Calculate PLS-SEM Sample Size

Main Article Content

Chanta Jhantasana

Abstract

Partial least square structural equation modeling (PLS-SEM) is more commonly used in marketing research because small sample sizes can be used. The main advantage is that the rule of thumb is often used to determine sample size, but the results may be underpowered. Therefore, appropriate sample size is still required to reach the acquired power of 0.80, which should be adequate to avoid false positive and false adverse effects arising from sample sizes that are too large or too small.


This research investigates the impact of different sample sizes on the power of analysis, the effect size, and the significance level of the model fitness and parameter estimation process. Many methods are used to generate study sample sizes, such as minimum R2, ten-time rule, inverse square root method, Marsh et al. method, Soper method, and Yamane method. The rule of thumb methods of minimum R2 and ten-time rule generate sample sizes that are too small and inappropriate for PLS-SEM.


However, the findings have shown that PLS-SEM can be effective with small sample sizes, but the sample size should be more significant than that generated by the rule-of –thumb methods. The appropriate sample size for this study was 50, with a power of 0.81 and an effect size (f2) ranging between 0.437 and 0.506.

Article Details

How to Cite
Jhantasana, C. . (2023). Should A Rule of Thumb be used to Calculate PLS-SEM Sample Size. Asia Social Issues, 16(5), e254658. https://doi.org/10.48048/asi.2023.254658
Section
Research Article

References

Aguirre-Urreta, M., & Rönkkö, M. (2015). Sample size determination and statistical power analysis in PLS using R: An annotated tutorial. Communications of the Association for Information Systems, 36(3), 33-51.

Ali, F., Rasoolimanesh, S. M., Sarstedt, M., Ringle, C. M., and Ryu, K. (2018). An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. International Journal of Contemporary Hospitality Management, 30(1), 514-538.

Baroudi, J. J., & Orlikowski, W. J. (1989). The problem of statistical power in MIS research. MIS Quarterly, 13(1), 87-106.

Bart, Y., Shankar, V., Sultan, F., and Urban, G. L. (2005). Are the drivers and role of online trust the same for all web sites and consumers? A large-scale exploratory empirical study. Journal of Marketing, 69(4), 133-152.

Bentler, P. M., & Chou, C. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78-117.

Bollen, K. A. (1989). Structural equations with latent lariables. New York: Wiley.

Boomsma, A. (2000). Reporting analyses of covariance structures. Structural Equation Modelling: A Multidisciplinary Journal, 7(3), 461-483.

Chin, W. W. (1998). The partial least squares approach to structural equation modeling (pp. 295-336). In Marcoulides, G. A. (Ed.). Modern methods for business research. Mahwah, NJ: Lawrence Erlbaum Associate.

Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares (pp. 307-342). In Hoyle, R. H. (Ed.). Statistical strategies for small sample research. Thousand Oaks: CA: Sage Publications.

Chiu, C., Huang, H., & Yen, C. (2010). Antecedents of trust in online auctions. Electronic Commerce Research and Applications, 9(2), 148-159.

Chiu, C., Wang, E. T., Fang, Y., & Huang, H. (2012). Understanding customers’ repeat purchase intentions in B2C e-commerce: The roles of utilitarian value, hedonic value, and perceived risk. Information Systems Journal, 24(1), 85-114.

Chu, K.M., & Yuan, J. (2013). The effects of perceived interactivity on e-trust and e-consumer behaviors: The application of fuzzy linguistic scale. Journal of Electronic Commerce Research, 14(1), 124-136.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd eds.). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.

Cunningham, J. B., & Mc-Crum Gardner, E. (2007). Power, effect, and sample size using GPower: practical issues for researchers and members of research ethics committees. Evidence-Based Midwifery, 5(4), 132-136.

Dash, S., & Saji, K. B. (2008). The role of consumer self-efficacy and website social-presence in customers’ adoption of B2C online shopping. Journal of International Consumer Marketing, 20(2), 33-48.

Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. London: UK: Cambridge University press.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, 70(350), 320-328.

Goodhue, D., Lewis, W., & Thompson, R. (2006). PLS, small sample size and statistical power in MIS research (pp.202b-202b). In Proceedings of the 39th Hawaii international conference on system sciences. Los Alamitos, CA: IEEE Computer Society Press.

Hair, F. J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM). European Business Review, 26(2), 106-121.

Hair, F. J., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). Advanced Issues in partial least squares structural equation modeling. Thousand Oaks, CA: SAGE Publications.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. (7th eds.). Englewood Cliffs: Prentice-Hall.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed, a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.

Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage.

Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027.

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2-20.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277-319.

Ibzan, E., Balarabe, F., & Jakada, B. (2016). Consumer satisfaction and repurchase intentions. Developing Country Studies, 6(2), 96-100.

Jöreskog, K. G. (1993). Testing structural equation models (pp. 294-316). In Bollen, K. A., & Long, J. S. (Eds.). Testing structural equation models. Newbury Park: Sage.

Khalifa, M., & Liu, V. (2007). Online consumer retention: contingent effects of online shopping habits and online shopping experience. European Journal of Information Systems, 16(6), 780-792.

Kock, N. (2018). Minimum sample size estimation in PLS-SEM: An application in tourism and hospitality research (pp.1-16). In Ali, F., Rasoolimanesch, S. M., & Cobanoglue, C. (Eds.). Applying partial least squares in tourism and hospitality research. Bradford, UK: Emerald Publishing Limited.

Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227-261

Kolenikov, S., & Bollen, K. A. (2012). Testing negative error variances. Sociological Methods & Research, 41(1), 124-167.

Krijnen, W. P., Dijkstra, T. K., & Gill, R. D. (1998). Conditions for factor (in) determinacy in factor analysis. Psychometrika, 63(4), 359-367.

Lee, M. K., & Turban, E. (2001). A trust model for consumer internet shopping. International Journal of Electronic Commerce, 6(1), 75-91.

Magno, F., Cassia, F., & Ringle, C. M. (2022). A brief review of partial least squares structural equation modeling (PLS-SEM) use in quality management studies. The TQM Journal, 1754-2731.

Marcoulides & Saunders. (2006). Editor’s comments: PLS: A silver bullet? MIS Quarterly, 30(2), iii-ix.

Marcoulides, Chin, & Saunders. (2009). A critical look at partial least squares Modelling. MIS Quarterly, 33(1), 171-175.

Marsh, H. W., Hau, K., Balla, J. R., and Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33(2), 181-220.

Maxham, J. G. (2001). Service recovery’s influence on consumer satisfaction, positive word-of-mouth, and purchase intentions. Journal of Business Research, 54(1), 11-24.

Morey, R., & Lakens, D. (2016). Why most of psychology is statistically unfalsifiable. Retrieved from doi:10.5281/zenodo.838685

Nitzl, C., Roldan, J. L., & Cepeda, G. (2016). Mediation analysis in partial least squares path modeling. Industrial Management & Data Systems, 116(9), 1849-1864.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd eds.). New York, NY: McGraw-Hill, Inc.

Parasuraman, A., Zeithaml, V. A. & Malhotra, A. (2005). E-S-QUAL: A multiple-item scale for assessing electronic service quality. Journal of Service Research, 7(10), 1-21.

Pee, L., Jiang, J., & Klein, G. (2018). Signaling effect of website usability on repurchase intention. International Journal of Information Management, 39, 228-241.

Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. SSRN Electronic Journal, 26(4), 332-344.

Rigdon, E. E. (1998). Advanced structural equation modeling: Issues and Techniques. Applied Psychological Measurement, 22(1), 85-87.

Rigdon, E. E. (2016). Choosing PLS path modeling as an analytical method in European management research: A realist perspective. European Management Journal, 34(6), 598-605.

Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On comparing results from CB-SEM and PLS-SEM: Five perspectives and five recommendations. Marketing ZFP, 39(3), 4-16.

Ringle, C. M., Sarstedt, M., Mitchell, R., & Gudergan, S. P. (2018). Partial least squares structural equation modeling in HRM research. The International Journal of Human Resource Management, 31(12), 1617-1643.

Ringle, Sarstedt, & Straub. (2012). Editor’s comments: A critical look at the use of PLS-SEM in MIS Quarterly. MIS Quarterly, 36(1), iii-xiv.

Rönkkö, M., & Evermann, J. (2013). A critical examination of common beliefs about partial least squares path modeling. Organizational Research Methods, 16(3), 425-448.

Rust, R. T., & Zahorik, A. J. (1993). Customer satisfaction, customer retention, and market share. Journal of Retailing, 69(2), 193-215.

Safa, N. S., & Von Solms, R. (2016). An information security knowledge sharing model in organizations. Computers in Human Behavior, 57, 442-451.

Sarstedt, M., & Mooi, E. (2014). A concise guide to market research: The process, data, and methods using IBM SPSS Statistics. Basingstoke, CA: Springer.

Soper, D. S. (2021). A-priori sample size calculator for structural equation models [Software]. Retrieved from https://www.danielsoper.com/statcalc/calculator.aspx?id=89

Stone, M. (1974). Cross‐validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133.

Tenenhaus, M., Amato, S., & Esposito Vinzi, V. (2004). A global goodness-of-fit index for PLS structural equation modeling. Proceedings of the XLII SIS scientific meeting, 739-742.

Tompson, R., Barclay, D. W., & Higgins, C. A. (1995). The partial least squares approach to causal modeling: Personal computer adoption and uses as an illustration. Technology Studies: Special Issue on Research Methodology, 2(2), 284-324.

Valvi, A. C., & West, D. C. (2013). E-Loyalty is not all about trust, the price also matters: extending expectation-confirmation theory in bookselling websites. Journal of Electronic Commerce Research, 14(1), 99-123.

Van Riel, A. C., Henseler, J., Kemény, I., & Sasovova, Z. (2017). Estimating hierarchical constructs using consistent partial least squares. Industrial Management & Data Systems, 117(3), 459-477.

Wold, H. (1982). Soft modeling: The basic design and some extensions (pp. 1-54). In Jöreskog, K. G., & Wold, H. (Eds.). Systems under indirect observations, part II. Amsterdam: North-Holland.

Zeithaml, V. A., Bitner, M. J., & Gremler, D. D. (2006). Services marketing: Integrating customer focus across the firm (4th eds.). Singapore: McGraw-Hill.