DEVELOPMENT OF AN IMMUNE-BOOSTING FOOD PRODUCT FROM THE PLANT BELONGING TO ZINGIBERACEAE FAMILY
Main Article Content
Abstract
This research aims to explore consumer attitudes towards immune-boosting food product for the development of immune-boosting food prototype products containing four types of Zingiberaceae Family plants, including fingerroot, ginger, galangal, and turmeric. These were formulated into cereal bars by modifying recipes from cereal bar products available in the market and favored by consumers. The tool used to assess consumer attitudes was a questionnaire administered to a target group of 100 general consumers in Chaiyaphum province, Thailand. The survey revealed that the majority of consumers prefer cereal bars (91.0%) and favor chocolate flavor. Additionally, the majority (90.0%) expressed interest in consuming cereal bars with Zingiberaceae Family plant ingredients known to enhance immunity. Post-analysis of consumer acceptance using the 9-point Hedonic Scale showed that all four types of products were well-accepted, with overall liking scores ranging from 7.68 to 8.11 out of 9, indicating a moderate to high level of liking. Turmeric-flavored bars received the highest score. The formulation of this product includes puffed rice (41.5%), glucose syrup (23.7%), raisins (17.8%), coconut sugar (11.9%), roasted perilla seeds (2.4%), roasted white sesame seeds (1.2%), roasted black sesame seeds (1.2%), salt (0.2%), and turmeric powder (0.2%). The production cost of immune-boosting food products, weighing approximately 15 grams per bar, ranges from 2.60 to 2.77 Baht. The analysis of the antioxidant properties of extracts from all four types of Zingiberaceae family plants using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH assay) revealed that ginger extract exhibited the highest antioxidant activity (IC50 = 34.7 µg/mL), followed by turmeric, fingerroot, and galangal (IC50 = 102.5, 191.8, and 303.0 µg/mL, respectively). These findings support the potential of the four prototype products to enhance immune function in the body.
Article Details
References
โรงพยาบาลจุฬาลงกรณ์. (2563). คลังความรู้สู้โควิด-19. สืบค้น 1 พฤศจิกายน 2566. จาก https://chulalongkornhospital.go.th
สำนักงานสาธารณสุขจังหวัดชัยภูมิ. (2562). คนชัยภูมิผนึกกำลังจัดตั้งกลุ่มเกษตรอินทรีย์ ปลูกข้าวปลอดภัย ไร้สารพิษ. สืบค้น 1 พฤศจิกายน 2566. จาก https://cpho.moph.go.th/?p=2723
กลุ่มงานยุทธศาสตร์และข้อมูลเพื่อการพัฒนาจังหวัด สำนักงานจังหวัดชัยภูมิ. (2565). ประชากรและโครงสร้างประชากรจังหวัดชัยภูมิ. สืบค้น 15 มิถุนายน 2566. จาก https://www.chaiyaphum.go.th/page_about/about2.1.php
Adam, G., Robu, S., Flutur, M. M., Cioanca, O., Vasilache, I. A., Adam, A. M., ... & Hancianu, M. (2023). Applications of Perilla frutescens extracts in clinical practice. Antioxidants, 12(3), 727.
Bendich, A. (1993). Symposium: Antioxidants, immune response, and animal function. Journal of Dairy Science, 76, 2789-2794.
Bonina F, Puglia C, Tomaino A, Saija A, Mulinacci N, Romani A, Vincieri FF. (2000). In-vitro antioxidant and in-vivo photoprotective effect of three lyophilized extracts of Sedum telephium L. leaves. Journal of Pharmacy and Pharmacology, 52, 1279–85.
Boustani, P., & Mitchell, V. W. (1990). Cereal bars: a perceptual, chemical and sensory analysis. British Food Journal, 92(5), 17-22.
Ding, S., Jiang, H., & Fang, J. (2018). Regulation of immune function by polyphenols. Journal of immunology research, 2018(1), 1264074.
Gurung, A. B., Ali, M. A., Al-Hemaid, F., El-Zaidy, M., & Lee, J. (2022). In silico analyses of major active constituents of fingerroot (Boesenbergia rotunda) unveils inhibitory activities against SARS-CoV-2 main protease enzyme. Saudi Journal of Biological Sciences, 29(1), 65-74.
Ma, X. N., Xie, C. L., Miao, Z., Yang, Q., & Yang, X. W. (2017). An overview of chemical constituents from Alpinia species in the last six decades. RSC advances, 7(23), 14114-14144.
Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 8(6), 185.
Nimse SB, Pal D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986-28006.
Panchit Seeniang and Supaporn Thaipakdee. (2013). Key Success Factors and Constraints of Organic Vegetable Production Systems in Thailand: Lessons Learned from Selected Cases of Best Practices. Kasetsart Journal of Social Sciences, 34, 162 – 170.
Soleimani, V., Sahebkar, A., & Hosseinzadeh, H. (2018). Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. Phytotherapy Research, 32(6), 985-995.
Szliszka, E., & Krol, W. (2011). The role of dietary polyphenols in tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis for cancer chemoprevention. European Journal of Cancer Prevention, 20(1), 63-69.
Yamane, T., (1967). Statistics: An Introductory Analysis, 2nd edition, NewYork: Harper and Row. p886.
Yu, H., Qiu, J. F., Ma, L. J., Hu, Y. J., Li, P., & Wan, J. B. (2017). Phytochemical and phytopharmacological review of Perilla frutescens L.(Labiatae), a traditional edible-medicinal herb in China. Food and Chemical Toxicology, 108, 375-391.
Zhou, Y. Q., Liu, H., He, M. X., Wang, R., Zeng, Q. Q., Wang, Y., ... & Zhang, Q. W. (2018). A review of the botany, phytochemical, and pharmacological properties of galangal. Natural and artificial flavoring agents and food dyes, 351-396.