Influence of Spring Index and Heat Treatment Temperature of Shape Memory Alloys on Offset Crank Heat Engine Efficiency

Authors

  • Bunheng Hok Energy Engineering, Faculty of Engineering and Technology, Siam Technology College
  • Vannet Yorn Energy Engineering, Faculty of Engineering and Technology, Siam Technology College
  • Aphinan Phukaoluan Department of Mechanical Technology Education, Faculty of Industrial Education and Technology, King Mongkut’s University of Technology Thonburi
  • Saravy Dum Energy Engineering, Faculty of Engineering and Technology, Siam Technology College

Keywords:

Shape Memory Spring, Spring Index, Offset Crank Heat Engine, Heat Treatment

Abstract

This research aims to study the effect of the shape memory spring index and heat treatment temperature on the heat engine efficiency using 0.5 mm shape memory wire to form springs with indices of (D/d) 7, 9 and 11. The springs were then subjected to a heat treatment at 350, 400 and 450oC for 30 min followed by quenching in cold water. These specimens were investigated for recovery force with a tensile test and phase transformation temperature with Differential Scanning Calorimeter (DSC). After getting the appropriate spring conditions, the springs were installed in the offset crank heat engine. The heat engine has an outer diameter of 522 mm, an inner diameter of 120 mm, an offset length of 50 mm, an offset angle of 30o, minimum and maximum spring length of 60 mm and 160 mm respectively. Springs were installed 9 rows throughout the circumference of the heat engine with 16 springs each row in the oblique line. The result illustrated that the spring with index of 7, heated at 400oC provides maximum recovery force equal to 3.254 N, transformation temperature to austenite finish phase at 62oC with the hysteresis of 15oC. When the springs were installed in the heat engine, at the water temperature of 75oC, it was found that the engine can generate maximum torque of 1.380 N.m, the mechanical power is 1.391 W, the maximum mechanical efficiency is 0.42%, the electrical power is 0.255 W and the maximum electrical efficiency is 18.32%

References

Zou CN, et al. 2016. Energy revolution: From a fossil energy era to a new energy era, Natural Gas Industry, http://dx.doi.org/10.1016/j.ngib.2016.02.001

Malhotra, Ripudaman. 2020. Fossil Energy. 10.1007/978-1-4939-9763-3.

Malhotra R. 2013. Fossil Energy, Introduction. In: Malhotra R. (eds) Fossil Energy. Springer. New York. NY. https://doi.org/10.1007/978-1-4614-5722-0_1

สำนักงานนโยบายและแผนพลังงาน. พลังงานหมุนเวียน. สืบค้น 25 มีนาคม 2564. จาก http://www.e-report.energy.go.th/EPPO_files/ media-05.pdf

กรมทรัพยากรธรณี. การใช้ประโยชน์น้ำพุร้อนเพื่อผลิตกระแสไฟฟ้า. สืบค้น 26 มีนาคม 2564. จาก http://www.dmr.go.th/n_more_news.php?filename=electric1

กรมทรัพยากรธรณี. น้ำพุร้อนในประเทศไทย. สืบค้น 30 มีนาคม 2564. จาก http://www.dmr.go.th/n_more_news.php?filename=hotthai

กรมส่งเสริมอุตสาหกรรม และสถาบันสิ่งแวดล้อมไทย. 2012. การจัดการพลังงานความร้อนภายในโรงงาน. กรมส่งเสริมอุตสาหกรรม. หน้า 141-162

กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน. 2555. การตรวจวิเคราะห์การอนุรักษ์พลังงานหม้อไอน้ำ. กระทรวงพลังงาน. หน้า 11

Ean H. Schiller. 2002. Heat Engine Driven by Shape Memory Alloys: Prototyping and Design. Faculty of Virginia Polytechnic Institute and State University. pp 16-24.

ณัฐ สัมมาวิภาวีกุล, สุชัจจ์ ภูริยากร และ หาญณรงค์ คล้ายสิงห์. 2013. การประยุกต์ใช้วัสดุฉลาดเป็นเครื่องจักรกลความร้อน (ปริญญาบัณฑิต). กรุงเทพฯ:มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

C.J. De Araújo, N.J. da Silva, M.M. da Silva and C.H. Gonzalez. 2011. A comparative study of Ni–Ti and Ni–Ti–Cu shape memory alloy processed by plasma melting and injection molding. Meterials & Design. 32(1). pp 4925-4930. doi.org/10.1016/j.matdes.2011.05.051

Kasama Srirussamee, Anak Khantachawana, Bunheng Hok and Aphinan Phukaoluan. 2021. Thermomechanical Performance of the Offset Crankshaft Heat Engine Driven by TiNiCu Shape Memory Alloys. Engineering Journal. 25 (2). pp 85-93. DOI:10.4186/ej.2021.25.1.85

Yunan Prawot. S.Manville, T.Sakai, M.Tanaka, and T.Gnauple-Herold. 2020. Manufacturing Process beyond Conventional Plasticity Theory: Case Study in Manufacturing Low Spring index Coil. INTERNATION JOURNAL OF APPLIED TECHNOLOGY RESEARCH. 1 (2). pp.98-109.

H Sadiq, M B Wong, R Al-Mahaidi and X L Zhao. 2010. The effects of heat treatment on the recovery stresses of shape memory alloys. Smart and Structures. 19 (3). pp 1-7. DOI:10.1088/0964-1726/19/3/035021

Ming H. Wu. 2002. Fabrication of Nitinol Materials and Components. Materials Science Forum. 394. pp 285-292. DOI:10.4028/www.scientific.net/MSF.394-395.285

A. Phukaluan, A. Khantachawana, P. Kaewtatip, S. Dchkunakorn, N. Anuwongnukroh, P. Santiwong and J. Kajornchaiyakul. 2011. Property Improvement of TiNi by Cu addition for Orthodontics Applications. Applied Mechanics and Materials. Vol. 87. pp 95-100. https://doi.org/10.4028/www.scientific.net/AMM.87.95

Downloads

Published

2021-08-10

Issue

Section

Research article