FROM FOUNDATIONS TO FRONTIERS: THE DEVELOPMENT AND FUTURE OF STRUCTURAL EQUATION MODELING (SEM)

ผู้แต่ง

  • Taisith Kruasom Faculty of Management Science, Ubon Ratchathani University
  • Sumalee Ngeoywijit Freelance Academics Assistant Professor
  • Sukhawit Sopapol Faculty of Management Science, Ubon Ratchathani University
  • Tenatat Kosanlawit Faculty of Management Science, Ubon Ratchathani University
  • Sairoong Sangwarn Faculty of Management Science, Ubon Ratchathani University
  • Pichaya Adthajak The Eastern University of Management and Technology

คำสำคัญ:

Development, Future, Structural Equation Modeling

บทคัดย่อ

Structural Equation Modeling (SEM) is a versatile statistical framework for modeling complex relationships among observed and latent variables. This narrative review traces SEM's development from its foundational roots in factor and path analysis to its current integration with machine learning, Bayesian techniques, and big data analytics. We critically examine SEM’s methodological advancements, including Confirmatory Factor Analysis (CFA), Multi-Group SEM, Bayesian SEM, and Dynamic SEM, and highlight its diverse applications across psychology, education, business, and health sciences. Emphasis is placed on current challenges—such as data quality, sample size, and model mis-specification—and future opportunities enabled by open-source tools and AI integration.

This review’s objective is explicitly aligned with the article’s purpose: to synthesize SEM’s historical development, current methodologies, challenges, and future directions into practical guidance for researchers using SEM in increasingly complex data environments. This paper provides a comprehensive synthesis for both novice and experienced researchers, offering guidance on using SEM effectively in an era of increasingly complex data environments. This review benefits readers by providing practical insights into applying SEM in their current research, guiding them to select suitable model-fitting tools and interpret results effectively.

 

Downloads

Download data is not yet available.

เอกสารอ้างอิง

Arbuckle, J. L. (1995). AMOS: Analysis of moment structures. SmallWaters Corporation.

Asparouhov, T. & Muthén, B. (2010). Bayesian analysis using Mplus: Technical implementation. Mplus Technical Report.

Asparouhov, T., Hamaker, E. L. & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359–388.

Asparouhov, T., Hamaker, E. & Muthén, B. (2018). Dynamic structural equation modeling. Structural Equation Modeling, 25(3), 359–372.

Astivia, O. L. O. (2020). Data quality in structural equation modeling: The impact of missing data and outliers. Structural Equation Modeling, 27(1), 1–13.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.

Bentler, P. M. & Wu, E. J. C. (1995). EQS for Windows user’s guide. Multivariate Software.

Bollen, K. A. (1989). Structural equations with latent variables. Wiley-Interscience.

Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons.

Bollen, K. A. (1996). An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika, 61(1), 109-121.

Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605-634.

Bollen, K. A. & Bauldry, S. (2011). Three Cs in measurement models: causal indicators, composite indicators, and covariates. Psychological Methods, 16(3), 265–284.

Bollen, K. A. & Curran, P. J. (2006). Latent Curve Models: A Structural Equation Perspective. Wiley.

Boomsma, A. (2000). Reporting analyses of covariance structures. Structural Equation Modeling, 7(3), 461–483.

Bradley, J. V. (1978). Robustness? British. Journal of Mathematical and Statistical Psychology, 31(2), 144–152.

Brandt, H., Kelava, A. & Stauffer, R. (2020). Comparing estimators for latent interaction models under model misspecification. Structural Equation Modeling, 27(4), 579–600.

Brooks, S. P. & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434–455.

Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). Guilford Press.

Byrne, B. M. (2010). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (2nd ed.). Routledge.

Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming (3rd ed.). Routledge.

Cham, H., Baraldi, A. N., Kim, J., Winters, D., Willms, J. & Llabre, M. M. (2012). Validity of regression-based estimates of latent interaction effects in structural equation models. Structural Equation Modeling, 19(3), 437–464.

Cheung, G. W. & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255.

Ellington, M. & Baruník, J. (2020). Nonlinear structural equation modeling in big data applications. Journal of Applied Econometrics, 35(3), 345–359.

Epskamp, S., Waldorp, L. J., Mõttus, R. & Borsboom, D. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453–480.

Fathema, N., Shannon, D. & Ross, M. (2015). Extending the technology acceptance model (TAM) to examine the use of faculty learning management systems (LMSs) in higher education. Computers in Human Behavior, 51(1), 349–356.

Fife, D. A., Brunwasser, S. M. & Merkle, E. C. (2023). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 105(1), 1–37.

Flora, D. B. (2018). Statistical methods for the social and behavioural sciences: A model-based approach. London, UK: SAGE Publications.

Gelman, A. & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.

Gelman, A., Hwang, J. & Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24(6), 997–1016.

Graham, J. W. (2008). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576.

Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2021). Multivariate data analysis (8th ed.). Cengage.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd ed.). SAGE Publications.

Hallquist, M. N. & Wiley, J. F. (2018). MplusAutomation: An R package for facilitating large-scale latent variable analyses in Mplus. Structural Equation Modeling, 25(4), 621–638.

Hamaker, E. L. & Wichers, M. (2017). Time series analysis in psychological research: Examining dynamic processes in real time. Psychological Methods, 22(3), 360-375.

Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F. & Muthén, B. (2018). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for time-series data. Multivariate Behavioral Research, 53(6), 820–841.

Ji, L., Zhou, H. & Zhang, Q. (2020). Bayesian estimation in structural equation modeling with small samples: A simulation study. Structural Equation Modeling, 27(2), 210–225.

Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57(2), 239–251.

Jöreskog, K. G. & Sörbom, D. (1978). LISREL: Analysis of Linear Structural Relationships by Maximum Likelihood and Least Squares Methods. Uppsala University Press.

Jöreskog, K. G. & Yang, F. (1996). Nonlinear structural equation models: The Kenny–Judd model with interaction effects. In G. A. Marcoulides & R. E. Schumacker. (Eds.). Advanced structural equation modeling: Issues and techniques. Lawrence Erlbaum Associates. 57–88.

Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of Anesthesiology, 64(5), 402–406.

Kelava, A. & Brandt, H. (2009). Estimation of nonlinear latent structural equation models using the extended unconstrained approach. Review of Psychology, 16(2), 105–113.

Kelava, A. & Brandt, H. (2022). Nonlinear Structural Equation Modeling: Foundations and Recent Advances. Annual Review of Organizational Psychology and Organizational Behavior, 9, 127–150.

Kenny, D. A. & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96(1), 201–210.

Klein, A. G. & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42(2), 301–337.

Klein, A. & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(3), 457–474.

Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling (4th ed.). Guilford Press.

Kline, R. B. (2023). Principles and practice of structural equation modeling (5th ed.). Guilford Press.

Koziol, N. A. (2023). Structural equation modeling: Foundations and new directions. Cambridge University Press.

Lee, S. Y. & Song, X. Y. (2004). Evaluation of the Bayesian and Maximum Likelihood Approaches in Analyzing Structural Equation Models with Small Sample Sizes. Multivariate Behavioral Research, 39(4), 653–686.

Little, R. J. A. & Rubin, D. B. (2019). Statistical Analysis with Missing Data (3rd ed.). Wiley.

Little, T. D. (2013). Longitudinal Structural Equation Modeling. Guilford Press.

Marsh, H. W., Wen, Z. & Hau, K. T. (2004). Structural equation models of latent interaction: Evaluation of alternative estimation strategies and new approaches to model fit. Structural Equation Modeling, 11(3), 320–341.

Maslowsky, J., Jager, J. & Hemken, D. (2015). Estimating and interpreting latent variable interactions: A tutorial for applying the latent moderated structural equations method. International Journal of Behavioral Development, 39(1), 87–96.

Maydeu-Olivares, A. (2017). Assessing SEM fit: Rules of thumb vs. the alternatives. Structural Equation Modeling, 24(4), 470–486.

McDonald, R. P. & Ho, M. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64–82.

Mustafa, M. B., Nordin, M. B. & Razzaq, A. B. A. (2020). Structural equation modeling using AMOS: Confirmatory factor analysis for the workload of teachers in special education integration programs. International Journal of Education, 8(1), 15–29.

Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49(1), 115–132.

Muthén, B. O. & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313–335.

Muthén, B. & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313–335.

Muthén, L. K. & Muthén, B. O. (2017). Mplus User’s Guide (8th ed.). Muthén & Muthén.

Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge University Press.

Pearl, J. (2023). Causal inference: An introduction to the science of causality (2nd ed.). Cambridge University Press.

R Foundation for Statistical Computing. (2025). R: A Language and Environment for Statistical Computing [Computer software]. Retrieved from https://www.R-project.org/

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.

Santoso, P. B., Asbari, M., Siswanto, E. & others. (2025). Systematic Literature Review: The Use of SEM in Business and Social Science Research in Thailand, 2021–2024. ABAC Journal, 45(2), 77–92.

Schoemann, A. M. & Jorgensen, T. D. (2021). Testing and interpreting latent variable interactions using the semTools package. Psych, 3(3), 322–335.

Schumacker, R. E., & Lomax, R. G. (2016). A beginner's guide to structural equation modeling (4th ed.). Routledge.

Shmueli, G., Ray, S., Estrada, J. M. V. & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564.

Spearman, C. (1904). General Intelligence, objectively determined and measured. American Journal of Psychology, 15(2), 201–292.

Steenkamp, J. B. E. M. & Baumgartner, H. (1998). Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research, 25(1), 78–90.

van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J. & van Aken, M. A. G. (2017). Bayesian SEM: The best of both worlds. Psychological Methods, 22(3), 240–257.

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557–585.

Wysocki, A., Lawson, K. M. & Rhemtulla, M. (2022). A review of machine learning in structural equation modeling. Journal of Educational and Behavioral Statistics, 47(3), 265–289.

ดาวน์โหลด

เผยแพร่แล้ว

2025-12-19