ความเป็นไปได้ในการประยุกต์ใช้โครงข่ายใยประสาทเทียมเพื่อทำนายโรคเต้านมอักเสบในโคนม
Main Article Content
บทคัดย่อ
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาความเป็นได้ในการประยุกต์ใช้โครงข่ายใยประสาทเทียมเพื่อการทำนายการเป็นโรคเต้านมอักเสบในโคนมโดยใช้ตัวแปรจากการตรวจแบบวิธีดั้งเดิมและวิธีทางเลือก โดยตัวแปรวิธีดั้งเดิมได้แก่ ค่าความเป็นกรดด่างของน้ำนมดิบ (pH) และค่าการนำไฟฟ้า (EC) ส่วนตัวแปรวิธีทางเลือกได้แก่ การถ่ายภาพความร้อนของเต้านมโค โดยเก็บตัวอย่างจากฟาร์ม โคนมในจังหวัดนครปฐม จำนวน 5 แห่ง มีประชากรโคนมทั้งหมด 645 ตัว ทำการสุ่มเก็บตัวอย่างแบบเจาะจงได้ข้อมูลทั้งสิ้น 112 ตัว จากการทดลองทำการถ่ายภาพความร้อนบริเวณเต้านมโค จากนั้นทำการเก็บตัวอย่างน้ำนมดิบนำมาวัดค่า pH ค่า EC โดยตัวแปรทั้ง 3 นี้ กำหนดให้เป็นอินพุตของโครงข่ายใยประสาทเทียม โดยชั้นเลเยอร์แฝงมี 3 ชั้น ชั้นที่ 1, 2 และ 3 มีโหนดจำนวน 4, 3 และ 2 โหนด ตามลำดับ และค่าเอาท์พุตมี 1 คำตอบ โดยแบ่งคำตอบออกเป็น 3 ประเภทได้แก่ กลุ่มไม่เป็นโรคเต้านมอักเสบ กลุ่มเป็นโรคเต้านมอักเสบแบบไม่แสดงอาการ และกลุ่มเป็นโรคเต้านมอักเสบแบบแสดงอาการ การเก็บข้อมูลได้แบ่งจำนวนข้อมูลสำหรับการสอนโครงข่ายใยประสาทเทียมเรียนรู้คิดเป็นร้อยละ 70 และใช้ทดสอบความแม่นยำของแบบจำลอง คิดเป็นร้อยละ 30 การทวนสอบผลการทำนายใช้ข้อมูลทั้งหมดในการหาค่าความแม่นยำโดยทำการตรวจยืนยันการเป็นโรคด้วยวิธีตรวจปริมาณเซลล์โซมาติกในน้ำนมดิบ และการตรวจด้วยวิธี California Mastitis Test (CMT) การทวนสอบความแม่นยำของ การเรียนรู้พบว่ามีค่าเท่ากับ 85.90% การทดสอบแบบจำลองมีค่าความแม่นยำ 79.41% และการทวนสอบผลการทำนาย มีค่าความแม่นยำ 85.71% แสดงให้เห็นว่าแบบจำลองโครงข่ายใยประสาทเทียมโดยใช้ตัวแปรจากการตรวจแบบวิธีดั้งเดิม (pH และ EC) และวิธีทางเลือกด้วยการภาพถ่าย ความร้อน สามารถทำนายโรคเต้านมอักเสบได้อย่าง มีประสิทธิภาพและอาจพัฒนาเป็นระบบสำหรับการประเมินการตรวจสอบคุณภาพนมด้วยวิธีซึ่งให้ผลเร็วได้
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
สงวนสิทธิ์ โดย สถาบันการอาชีวศึกษาภาคตะวันออกเฉียงเหนือ 1
306 หมู่ 5 ถนนมิตรภาพ หนองคาย-อุดรธานี ตำบลโพธิ์ชัย อำเภอเมืองหนองคาย จังหวัดหนองคาย 43000
โทร 0-4241-1445,0-4241-1447
ISSN : 3027-6861 (print) ISSN : 3027-687X (online)
References
Information and Communication Technology Center, Department of Livestock Development, Ministry of Agriculture and Cooperatives, 2022, Livestock data in Thailand for B.E.2565, [Online]. https://ict.dld.go.th/webnew/images/stories /report/regislives/ani2565.pdf. (Accessed 23 September 2023). (in Thai)
Sodkhokkuad, T. and Obidiegwu, A., “An Economic Loss Analysis due to Mastitis in Dairy Farms”, Proceedings of The 12th NPRU
National Academic Conference Nakhon Pathom Rajabhat University, 9 - 10 July 2020. Nakhon Pathom, Thailand, pp. 2252- 2260. (in Thai)
Wacharatewinkul, Y. and Suanchuto, J, 2021, “Screening of Lactic Acid Bacteria Producing Bacteriocin Capable to Inhibit the Growth of Bovine Mastitis Pathogens”. Rajamangala University of Technology Srivijaya Research Journal. 13(2) : 285–301. (in Thai)
Kajaysri, J.and et.al., 2014, “The Efficiency of Mastivac® Vaccine for Preventive Mastitis in Dairy Cow”, Journal of Mahanakorn Veterinary Medicine. 9(1) : 37-48. (in Thai)
National Institute of Animal Health, Department of Livestock Development, Ministry of Agriculture and Cooperatives, 2022, Standard Methods for Quality Inspection of Raw Milk, [Online]. https://niah.dld.go.th/webnew/knowledge/ knowledge-major-diseases inanimals/cattle/เต้านมอักเสบ-mastitis (Accessed 1 April 2023). (in Thai)
Department of Livestock Development, Ministry of Agriculture and Cooperatives, 2010, Standard Methods for Quality Inspection of Raw Milk, Bangkok: The Agricultural Co-Operative Federation of Thailand (LTD.) Press. (in Thai)
Norberg, E. and et al., 2004, “Electrical Conductivity of Milk: Ability to Predict Mastitis Status”, Journal of Dairy Science, 87(4) : 1099-1107.
Rees, A., Fischer-Tenhagen, C. and Heuwieser, W. 2017. “Udder Firmness as a Possible Indicator for Clinical Mastitis”, Journal of Dairy Science, 100(3), 2170-2183.
Sathiyabarathi, M. and et al., 2018, “Infrared Thermal Imaging of Udder Skin Surface Temperature Variations to Monitor Udder Health Status in Bos indicus (Deoni) Cows”, Infrared Physics & Technology, 88: 239-244.
Golzarian, M. R. and et al., 2017, “Possibility of Early Detection of Bovine Mastitis in Dairy Cows using Thermal Images Processing”, Iranian Journal of Applied Animal Science, 7(4) : 549-557.
Valero, A. and et al., 2007, “Product Unit Neural Network Models for Predicting the Growth Limits of Listeria monocytogenes”,
Food Microbiology, 24(5) : 452-464.
Yu, C., Davidson, V. J. and Yang, S. X. 2006. “A Neural Network Approach to Predict Survival/Death and Growth/No-growth interfaces for Escherichia coli O157:H7”, Food Microbiology, 23(6): 552-560.
Nazira, M.M. and Ismail, K., 2015, “Application of neural network and adaptive neuro- fuzzy inference system to predict subclinical
mastitis in dairy cattle”, Indian Journal Animal Research, 49(5) : 671-679.
Modh, R. and et al. 2018. “Study on pH and Somatic Cell Count in Milk of Sub-clinical Mastitis Cows in Association with Udder
and Teat Shape”. Indian Journal of Animal Production and Management. 34(1-2) : 75-79.
Limtrakul, P., Jaroenpuntaruk V. andPornpatcharapong W., 2016, “Developmentof a Model to Predict Cassava Yield UsingData Mining”, Veridian E-journal Scienceand Technology Silpakorn University.3(3) : 15-36. (in Thai)
Srisa-ard, B., 2017, Basic Research (10th ed.), Bangkok: Siveeriyasarn. (in Thai)
Coşkun, G., and I. Aytekin, 2021, “Early Detection of Mastitis by Using Infrared Thermography in Holstein-Friesian Dairy Cows Via Classification and Regression Tree (CART) Analysis”, Selcuk Journal of Agriculture and Food Sciences, 35(2) : 118-127.
Abdullah, O. M. and et al., 2023, “Healthy, Sub-clinical, and Clinical Mastitis in Holstein-Friesian Cattle: A Comparative Echotextural and Electrical Conductivity Study”, South African Journal of Animal Science, 53(2) : 221-230.
Aravind, S. and Barik, D., 2023.,“Taguchi Optimization on the Biooil Extraction from Fresh Water Algae (Spirogyra) Using Soxhlet Apparatus”, International Journal of Energy Research, 2023 : 1-11.
Department of Livestock Development, Ministry of Agriculture and Cooperatives, 2016, Raw Milk Quality Inspection, Bangkok : The Agricultural Co-Operative Federation of Thailand (LTD.) Press. (in Thai)
National Bureau of Agricultural Commodity and Food Standards, 2017, THAI AGRICULTURAL STANDARD TAS 6401-2017 Guidelines for the application of agricultural product standards Good practices for raw milk collection centers, Bangkok : Ministry of Agriculture and Cooperatives. (in Thai)
National Bureau of Agricultural Commodity and Food Standards, 2010, THAI AGRICULTURAL STANDARD TAS 6003-2010 Raw Cow Milk, Bangkok: Ministry of Agriculture and Cooperatives. (in Thai)
Wabang, K. and Nurhayati, O., 2022, “Application of The Naïve Bayes Classifier Algorithm to Classify Community Complaints”, Journal RESTI. 6(5) : 872-876.
Padmavati, J., 2011, “A comparative Study on Breast Cancer Prediction using RBF and MLP”, International Journal of Scientific & Engineering Research, 2(1) : 1-5.
Yan, H. and et al., 2006, “A multilayer Perceptron-based Medical Decision Support System for Heart Disease Diagnosis”, Expert Systems with Applications, 30(2) : 272-281.
Yu, Z. M. and et al., 2023, “Popular Deep Learning Algorithms for Disease Prediction: A Review”, Cluster Computing, 26 (2) : 1231-1251.
Vuttipittayamongkol, P., Elyan E. and Petrovski A., 2021, “On the Class Overlap Problem in Imbalanced Data Classification”, KnowledgeBased Systems, 212(5) : 1-17.