Factors Effecting to Decision Making on Online Restaurant Service of Customers in Bangkok during COVID-19 Pandemic

Authors

  • Thareethip Taki Asst. Prof.

Keywords:

Food Delivery, Decision Making, Marketing Mix, Online Restaurant

Abstract

The objective of this research is to 1) study consumer behavior on online restaurant purchase during COVID-19 pandemic in Bangkok 2) compare the decision making on online restaurant purchase with consumer’s demographical factors and 3) predict the marketing mix factors with decision making on online restaurant purchase. This quantitative research was collected data by 407 online questionnaires and analyzed by SPSS program for frequency, percentage, mean, standard deviation, T-test, One-way ANOVA, and Multiple Regression. The results found that the majority of the respondents were single male, aged between 20-30 years, having bachelor degree, working as a private company employee, and earning approximately 15,001-30,000 baht per month. The findings of hypothesis testing showed that none of different consumer’s demographic data effected the decision making on online restaurant purchase with statistical significance at the level of 0.05 and the product or service, place or distribution channel, and process were the most three marketing mix factors that influenced the consumer’s decision making on online restaurant purchase with statistical significance at the level of 0.05 respectively. The data of this study would be beneficial to restaurant business and related stakeholders in developing and adapting online products and service, especially in food and beverages and delivery to reach the needs of consumer well and sustainably in the future.

References

กรมการปกครอง, กระทรวงมหาดไทย. (2563) สถิติจำนวนประชากรและความหนาแน่นในเขตกรุงเทพมหานคร. http://www.bangkok.go.th/pipd/page/sub/21303/สถิติกรุงเทพมหานคร-2563
ชนิภา ช่วยระดม. (2561). ปัจจัยส่วนประสมทางการตลาดที่ส่งผลต่อการเลือกใช้บริการสั่งซื้ออาหารผ่าน Food Panda Application ในเขตกรุงเทพมหานคร. วารสารธุรกิจและสังคมศาสตร์ มหาวิทยาลัยรามคำแหง. 1(2), 43-55.
ณัฐศาสตร์ ปัญญานะ และ วัชรพจน์ ทรัพย์สงวนบุญ. (2562). ปัจจัยที่มีผลต่อการตัดสินใจใช้บริการอาหารตามสั่งแบบจัดส่ง. วารสารเศรษฐศาสตร์และบริหารธุรกิจ มหาวิทยาลัยทักษิณ, 11(1), 53-66.
วิริยา จันทร์ทอง และ ไพบูลย์ อาชารุ่งโรจน์. (2563). ปัจจัยส่วนประสมทางการตลาดที่มีความสัมพันธ์กับพฤติกรรมการสั่งซื้ออาหารออนไลน์ผ่านฟู้ดแพนด้าของผู้บริโภคในเขตกรุงเทพมหานคร. http://ir-ithesis.swu.ac.th/dspace/handle/123456789/714
Altay, B.C., Okumus, A. & Mercangoz, B.A. (2021). An intelligent approach for analyzing the impacts of the COVID-19 pandemic on marketing mix elements (7Ps) of the on-demand grocery delivery service. Complex & Intelligent Systems, 1-12.
Bagozzi, R.P. (1986). Principles of marketing management. Chicago: Science Research Associates.
Bujang, M.A., Sa’ at, N. & Sidik, T.M.I.T.A.B. (2017). Determination of minimum sample size requirement for multiple linear regression and analysis of covariance based on experimental and non-experimental studies. Epidemiology, Biostatistics and Public Health, 14(3), 1-9.
Churchill, GA & Peter, JP. (1998). Marketing: Creating Value for Customers. Boston: Irwin/McGraw-Hill.
GSMA. (2020). The mobile economy. https://www.gsma.com/mobileeconomy/
Hawkins, D.I. & Mothersbaugh, D.L. (2013). Consumer Behavior: building marketing strategy. New York: McGraw-Hill Irwin.
Kotler, P. (1997). Marketing management: analysis, planning implementation and control. (9thed.). New Jersey: Asimmon &Schuster.
Kotler, P. (2000). Marketing Management. New Jersey: Prentice Hall.
Mehrabian A. & Russell JA. (1974). The Basic Emotional Impact of Environments. Perceptual and Motor Skills. 38(1): 283-301.
Mehrolia, S., Alagarsamy, S., & Solaikutty, V.M. (2021). Customers response to online food delivery services during COVID-19 outbreak using binary logistic regression. International Journal of Consumer Studies, 45(3), 396-408.
Nunnally, J.C. & Benstein, I.H. (1994). Psychometric Theory (3rd ed.). McGraw-Hill.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge University Press.
Prasetyo, Y.T., Tanto, H., Mariyanto, M., Hanjaya, C., Young, M.N., Persada, S.F., …& Redi, A.A.N.P. (2021). Factors affecting customer satisfaction and loyalty in online food delivery service during the covid-19 pandemic: Its relation with open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 76.
Rosa, A., & Yunita, D. (2020). Consumer Decision on Online Food Delivery. Sriwijaya Economics, Accounting, and Business Conference (SEABC 2019). (pp. 418-422). Atlantis Press.
Solomon, M.R., Russelly, R.B & Previte, J. (2013). Consumer Behavior: Buying, having and being (10th ed.). London: Prenticle Hall.
Statistia. (2019). eServices report 2019 – online food delivery. https://www.statista.com/study/40457/food-delivery/
Stern, H. (1962). The significance of impulse buying today. Journal of Marketing, 26, 59-63.
Walter J. M. (1978). Kickert: Fuzzy Theories of Decision Making. Boston: Martinus Nighoff.
Woodworth, R. S., & Schlosberg, H. (1954). Experimental psychology (Rev. ed.). Holt.

Downloads

Published

2021-12-28

How to Cite

Taki, T. (2021). Factors Effecting to Decision Making on Online Restaurant Service of Customers in Bangkok during COVID-19 Pandemic. URU Journal of Integrated Sciences for Development, 11(2), 43–53. retrieved from https://so06.tci-thaijo.org/index.php/GRAURU/article/view/249595

Issue

Section

Academic Articles