โภชนาการ สารพฤกษเคมีเบื้องต้น และฤทธิ์ต้านอนุมูลอิสระของเห็ดนางรมสีทองและเห็ดนางรมสีชมพู
Main Article Content
บทคัดย่อ
การศึกษาครั้งนี้ทำการวิเคราะห์คุณค่าทางโภชนาการ สารพฤกษเคมีเบื้องต้น และฤทธิ์ต้านอนุมูลอิสระ ของเห็ดนางรมสีทองและเห็ดนางรมสีชมพูที่เพาะเลี้ยงในจังหวัดเพชรบุรี การวิเคราะห์เชิงโภชนาการ พบว่า เห็ดนางรมสีทองและเห็ดนางรมสีชมพูมีปริมาณโปรตีนร้อยละ 5.6 และ 6.04 น้ำหนักสด และมีไขมัน ร้อยละ 0.08 และ 0.01 น้ำหนักสด ตามลำดับ สารพฤกษเคมีของเห็ดนางรมทั้งสองชนิดในสารสกัดด้วยน้ำและสารสกัดเมทานอลประกอบด้วยสารแอลคาลอยด์ สเตียรอยด์ แทนนินและคูมาริน ส่วนฟลาโวนอยด์พบเฉพาะในสารสกัด เมทานอลของเห็ดนางรมทั้งสองชนิด การศึกษาฤทธิ์ต้านอนุมูลอิสระด้วยวิธี 2,2-diphenyl-1-picrylhydrazyl (DPPH) และความสามารถในการรีดิวซ์เฟอริก (FRAP) พบว่า สารสกัดเมทานอลของเห็ดนางรมสีทองมีฤทธิ์ต้านอนุมูลอิสระที่ดีที่สุด มีค่า IC50 ต่ำสุดเท่ากับ 5.50 ±0.05 mg/ml และความสามารถในการรีดิวซ์สูงสุดเท่ากับ 40.28±1.47 µmolTE/g ซึ่งฤทธิ์ต้านอนุมูลอิสระดังกล่าวสอดคล้องกับปริมาณฟีนอลิกรวมในสารสกัด ส่วนสารสกัดเมทานอลของเห็ดนางรมสีชมพู มีค่า IC50 เท่ากับ 8.02 ±0.07 mg/ml และความสามารถในการรีดิวซ์เท่ากับ 36.62±1.63 µmolTE/g ตามลำดับ ปริมาณฟีนอลิกรวมและฤทธิ์ต้านอนมูลอิสระของเห็ดทั้งสองชนิดในสารสกัดน้ำน้อยกว่าในสารสกัดเมทานอล จากการศึกษานี้แสดงให้เห็นว่าเห็ดนางรมสีทองและเห็ดนางรมสีชมพูเป็นแหล่งอาหารที่มีคุณภาพและมีสารต้านอนุมูลอิสระที่ดีมีประโยชน์ต่อสุขภาพ
Downloads
Article Details
ลิขสิทธิ์บทความวิจัยที่ได้รับการตีพิมพ์เผยแพร่ในวารสารวิจัยและพัฒนา วไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ ถือเป็นกรรมสิทธิ์ของสถาบันวิจัยและพัฒนา มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ ห้ามนำข้อความทั้งหมดหรือบางส่วนไปพิมพ์ซ้ำ เว้นแต่จะได้รับอนุญาตจากมหาวิทยาลัยเป็นลายลักษณ์อักษร
ความรับผิดชอบ เนื้อหาต้นฉบับที่ปรากฏในวารสารวิจัยและพัฒนา วไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ เป็นความรับผิดชอบของผู้นิพนธ์บทความหรือผู้เขียนเอง ทั้งนี้ไม่รวมความผิดพลาดอันเกิดจากเทคนิคการพิมพ์
References
บุษราคัม สิงห์ชัย, จันทร์จิรา ขอจุลซ้วน, และปาริฉัตร ด้วงทอง. (2560). พฤกษเคมีและฤทธิ์ทางชีวภาพของชาเล็บรอก. วารสารวิทยาศาสตร์และเทคโนโลยี, 25(5), 831-838.
AOAC. (2019). Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, Washington DC
Adebayo, E. A., & Oloke, J. K. (2017). Oyster mushroom (Pleurotus species); A natural functional food. Journal of Microbiology, Biotechnology and Food Sciences, 7(3), 254–264.
Agarwal, S., Kushwaha, A., Verma, V., & Singh, M. P. (2017). Nutritional attiributes of Pleurotus mushroom. In: Singh MP. Verma V (Eds.). Incredible world of Biotechnology, Nova Science Publishers, 13-24.
Boonsong, S., Klaypradit, W., & Wilaipun, P. (2016). Antioxidant activities of extracts from five edible mushrooms using different extractants. Agriculture and Natural Resources, 50(2), 89–97.
Caglarirmak, N. (2007). The nutrients of exotic mushrooms (Lentinula edodes and Pleurotus species) and an estimated approach to the volatile compounds. Food Chemistry, 105(3), 1188–1194.
Chen, J.-N., de Mejia, E. G., & Wu, J. S.-B. (2011). Inhibitory Effect of a Glycoprotein Isolated from Golden Oyster Mushroom (Pleurotus citrinopileatus) on the Lipopolysaccharide-Induced Inflammatory Reaction in RAW 264.7 Macrophage. Journal of Agricultural and Food Chemistry, 59(13), 7092–7097.
Chen, J.-N., Wang, Y.-T., & Wu, J. S.-B. (2009). A Glycoprotein Extracted from Golden Oyster Mushroom Pleurotus citrinopileatus Exhibiting Growth Inhibitory Effect against U937 Leukemia Cells. Journal of Agricultural and Food Chemistry, 57(15), 6706–6711.
Erbiai, E. H., Da Silva, L. P., Saidi, R., Lamrani, Z., Esteves Da Silva, J. C. G., & Maouni, A. (2021). Chemical Composition, Bioactive Compounds, and Antioxidant Activity of Two Wild Edible Mushrooms Armillaria mellea and Macrolepiota procera from Two Countries (Morocco and Portugal). Biomolecules, 11(4), 575.
Galanakis, C. M., Goulas, V., Tsakona, S., Manganaris, G. A., & Gekas, V. (2013). A knowledge base for the recovery of natural phenols with different solvents. International Journal of Food Properties, 16(2), 382–396.
Keles, A., Koca, I., & Gençcelep, H. (2011). Antioxidant Properties of Wild Edible Mushrooms. Journal of Food Processing & Technology, 2(6), 2-6.
Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., Petrović, P., Niksic, M., Vrvic, M., & Van Griensven, L. (2015). Antioxidants of Edible Mushrooms. Molecules, 20(10), 19489–19525.
Landi, N., Clemente, A., Pedone, P. V., Ragucci, S., & Di Maro, A. (2022). An Updated Review of Bioactive Peptides from Mushrooms in a Well-Defined Molecular Weight Range. Toxins, 14(2), 84.
Lee, Y.-L., Huang, G.-W., Liang, Z.-C., & Mau, J.-L. (2007). Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT - Food Science and Technology, 40(5), 823–833.
Meng, T.-X., Furuta, S., Fukamizu, S., Yamamoto, R., Ishikawa, H., Arung, E. T., Shimizu, K., Ohga, S., & Kondo, R. (2011). Evaluation of biological activities of extracts from the fruiting body of Pleurotus citrinopileatus for skin cosmetics. Journal of Wood Science, 57(5), 452–458.
Musieba, F., Okoth, S., K. Mibey, R., Wanjiku, S., & Moraa, K. (2013). Proximate Composition, Amino Acids and Vitamins Profile of Pleurotus citrinopileatus Singer: An Indigenous Mushroom in Kenya. American Journal of Food Technology, 8(3), 200–206.
Nayak, H., Kushwaha, A., Behera, P. C., Shahi, N. C., Kushwaha, K. P. S., Kumar, A., & Mishra, K. K. (2021). The Pink Oyster Mushroom, Pleurotus djamor (Agaricomycetes): A Potent Antioxidant and Hypoglycemic Agent. International Journal of Medicinal Mushrooms, 23(12), 29–36.
Neha, B., Harinder, S. O., & Simranjeet, K. S. (2015). Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues. Critical Reviews in Food Science and Nutrition, 55(3), 319-337.
Obodai, M., Owusu, E., Schiwenger, G. O., Asante, I. K., & Dzomeku, M . (2014). Phytochemical and Mineral Analysis of 12 Cultivated Oyster Mushrooms (Pleurotus Species). Advances in Life Science and Technology, 26, 35-42.
Pasakawee, K., Banjongsinsiri, P., Donrung, N., & Satiankomsorakrai, J. (2018). Nutritional and antioxidant properties of selected-commercial mushroom in Thailand. Journal of Food Science and Agricultural Technology, 4(spcl.Iss), 36-40.
Patel, Y., Naraian, R., & Singh, V. K. (2012). Medicinal Properties of Pleurotus Species (Oyster Mushroom): A Review. World J. Fungal & Plant Biol, 3(1), 1-12.
Raman, J., Lakshmanan, H., Jang, K.-Y., Oh, M., Oh, Y.-L., & Im, J.-H . (2020). Nutritional composition and antioxidant activity of pink oyster mushrooms (Pleurotus djamor var. Roseus) grown on a paddy straw substrate. Journal of Mushroom, 18(3), 189–200.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299,152-178.
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781.
Srikram, A., & Supapvanich, S. (2016). Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agriculture and Natural Resources, 50(6), 432–436.
Toledo, C., Barroetaveña, C., Fernandes, Â., Barros, L., & Ferreira, I. (2016). Chemical and Antioxidant Properties of Wild Edible Mushrooms from Native Nothofagus spp. Forest, Argentina. Molecules, 21(9), 1201-1215.
Valverde, M. E., Hernández-Pérez, T., & Paredes-López, O. (2015). Edible Mushrooms: Improving Human Health and Promoting Quality Life. International Journal of Microbiology, 2015, 1–14.