QUANTIFICATION OF BIOACTIVE COMPOUNDS IN CRUDE EXTRACTS FROM DIFFERENT PARTS OF Nerium oleander L., AND THEIR ANTIOXIDANT, TYROSINASE INHIBITORY, XANTHINE OXIDASE INHIBITORY, AND ANTIBACTERIAL ACTIVITIES
Main Article Content
Abstract
Nerium oleander L. is a plant from the Apocynaceae family traditionally used in herbal medicine; however, comprehensive studies on the bioactivities of all plant parts remain limited. This study aimed to determine the total phenolic and flavonoid contents and to compare the bioactivities of crude extracts obtained from the leaves, flowers, and stems of N. oleander. Extraction was performed using 95% ethanol through maceration. The results revealed that the flower extract exhibited the highest levels of total phenolics and flavonoids, along with the strongest bioactivities across all assays. Specifically, the flower extract demonstrated potent antioxidant activity, tyrosinase inhibitory activity, xanthine oxidase inhibitory activity, and antibacterial effects against Staphylococcus aureus, Bacillus cereus, and Salmonella typhimurium, performing better than the leaf and stem extracts, with activities comparable to those of the standard references. These findings suggest that N. oleander flower extracts demonstrate high potential for development as natural antioxidants, tyrosinase inhibitors for skin-conditioning products, xanthine oxidase inhibitors for gout treatment, and antimicrobial agents. Nevertheless, product development from N. oleander must carefully address safety concerns, as the plant contains highly toxic cardiac glycosides. Further studies on compound isolation and clinical safety evaluations are warranted to support future applications.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
The copyright of research articles published in the VRU Research and Development Journal Science and Technology Journal belongs to the Research and Development Institute, Valaya Alongkorn Rajabhat University under the Royal Patronage. Reproduction of the content, in whole or in part, is prohibited without prior written permission from the university.
Responsibility
The content published in the VRU Research and Development Journal Science and Technology Journal is the sole responsibility of the author(s). The journal does not assume responsibility for errors arising from the printing process.
References
Abdallah, E. M. (2020). Plants: An alternative source for antimicrobials. Journal of Applied Pharmaceutical Science, 1(6), 16-20.
Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73(2), 239-244.
Azwanida, N. N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med aromat plants, 4(196), 2167-0412.
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.
Calderón-Montaño, J. M., Burgos-Morón, E., Orta, M. L., Mateos, S., & López-Lázaro, M. (2013). A hydroalcoholic extract from the leaves of Nerium oleander inhibits glycolysis and induces selective killing of lung cancer cells. Planta Medica, 79(12), 1017–1023.
Clinical and Laboratory Standards Institute. (2021). Performance standards for antimicrobial susceptibility testing (31st ed.). CLSI supplement M100.
Cos, P., Vlietinck, A. J., Vanden Berghe, D., & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. Journal of Ethnopharmacology, 106(3), 290–302.
Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Van Poel, B., Pieters, L., Vlietinck, A. J., & Vanden Berghe, D. (1998). Structure–Activity Relationship and Classification of Flavonoids as Inhibitors of Xanthine Oxidase and Superoxide Scavengers. Journal of Natural Products, 61(1), 71–76.
Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.
Dalbeth, N., Merriman, T. R., & Stamp, L. K. (2016). Gout. The Lancet, 388(10055), 2039-2052.
Deriňa, B., Sasinková, V., & Kováčová, E. (2016). The unravelling of the complex pattern of tyrosinase inhibition. Scientific Reports, 6(1), 34993.
Gama, T. D. S. S., Rubiano, V. S., & Demarco, D. (2017). Laticifer development and its growth mode in Allamanda blanchetii A. DC.(Apocynaceae). The Journal of the Torrey Botanical Society, 144(3), 303-312.
Handa, S. S. (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction technologies for medicinal and aromatic plants, 1(1), 21-40.
Havlik, J., de la Huebra, R. G., Hejtmankova, K., Fernandez, J., Simonova, J., Melich, M., & Rada, V. (2010). Xanthine oxidase inhibitory properties of Czech medicinal plants. Journal of ethnopharmacology, 132(2), 461-465.
Hussain, M., Bakhsh, H., Aziz, A., Majeed, A., Khan, I. A., Mujeeb, A., & Farooq, U. (2013). Comparative In vitro study of antimicrobial activities of flower and whole plant of Jasminum officinale against some human pathogenic microbes. Journal of Pharmacy and Alternative Medicine, 2(4), 33-43.
Jahan, S., Gosh, T., Begum, M., & Saha, B. K. (2011). Nutritional profile of some tropical fruits in Bangladesh: specially anti-oxidant vitamins and minerals. Bangladesh Journal of Medical Science, 10(2), 95-103.
Kozłowska, M., Ścibisz, I., Przybył, J. L., Laudy, A. E., Majewska, E., Tarnowska, K., Małajowicz, J., & Ziarno, M. (2022). Antioxidant and antibacterial activity of extracts from selected plant material. Applied Sciences, 12(19), 9871.
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757-772.
Li, J., Ni, Y., Li, J., & Fan, L. (2024). Xanthine oxidase inhibitory activity of quercetin and its derivatives: Interaction mechanism and evaluation methods. Food Bioscience, 59, 103982.
Lu, Y., Knoo, T. J., & Wiart, C. (2014). Phytochemical analysis and antioxidant activity determination on crude extracts of Melodinus eugeniifolus barks and leaves from Malaysia. Pharmacology & Pharmacy, 5(8), 773–780.
Mohadjerani, M. (2012). Antioxidant activity and total phenolic content of Nerium oleander L. grown in North of Iran. Iranian Journal of Pharmaceutical Research, 11(4), 1121-1126.
Mouhcine, M., Amin, L., Saaid, A., Khalil, H., Laila, B., & Mohammed, E. M. (2019). Cytotoxic, antioxidant and antimicrobial activities of Nerium oleander collected in Morocco. Asian Pacific Journal of Tropical Medicine, 12(1), 32-37.
Muddathir, A. M., Yamauchi, K., Mitsunaga, T., & Batubara, I. (2017). Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. South African Journal of Botany, 109, 9-15.
Naz, R., Ayub, H., Nawaz, S., Islam, Z. U., Yasmin, T., Bano, A., Wakeel, A., Zia, S., & Roberts, T. H. (2021). Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complementary and Alternative Medicine, 17(1), 302.
Nguyen, M. T. T., Awale, S., Tezuka, Y., Tran, Q. L., Watanabe, H., & Kadota, S. (2004). Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biological and Pharmaceutical Bulletin, 27(9), 1414-1421.
Nithya, P. Y., Kala, S. J., & Mohan, V. R. (2016) . Evaluation of total phenolics, flavonoid contents and in-vitro antioxidant properties of Catharanthus pusillus (Apocynaceae). IJPSR, 7, 3021-3027.
Umamaheswari, M., Asokkumar, K., Sivashanmugam, A. T., Remyaraju, A., Subhadradevi, V., & Ravi, T. K. (2009). In vitro xanthine oxidase inhibitory activity of the fractions of Erythrina stricta Roxb. Journal of ethnopharmacology, 124(3), 646-648.
Prommuak, C., D-Eknamkul, W. & Shotipruk, A. (2008). Extraction of flavonoids and carotenoids from thai silk waste and antioxidant activity of extract. Separation and Purification Technology, 62(2), 444-448.
Rahman, M. M., Ahmad, S. H., Mohamed, M. T. M., & Ab Rahman, M. Z. (2014). Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata. The Scientific World Journal, 2014(1), 635240.
Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC complementary and alternative medicine, 12(1), 221.
Zare, F., Sadeghian, S., Khoshneviszadeh, M., Pasbani, M., Sabet, R., & Sadeghpour, H. (2024). Assessment of Anti-tyrosinase and Antioxidant Activities along with Molecular Docking Studies, and in silico ADME of Some 3-Hydroxypyridin-4-one Derivatives. Trends in Pharmaceutical Sciences, 10(3). 251.
Simoes, M., Bennett, R. N., & Rosa, E. A. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural product reports, 26(6), 746-757.
Vl, S. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
Teugwa, C. M., Mejiato, P. C., Zofou, D., Tchinda, B. T., & Boyom, F. F. (2013). Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae). BMC complementary and alternative medicine, 13(1), 175.
Jaberian, H., Piri, K., & Nazari, J. (2013). Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food chemistry, 136(1), 237-244.
Wen, L., Zhao, Y., Jiang, Y., Yu, L., Zeng, X., Yang, J., Tian, M., Liu, H., & Yang, B. (2017). Identification of a flavonoid C-glycoside as potent antioxidant. Free Radical Biology and Medicine, 110, 92–101.
Napagoda, M. T., Kumari, M., Qader, M. M., De Soyza, S. G., & Jayasinghe, L. (2018). Evaluation of tyrosinase inhibitory potential in flowers of Cassia auriculata L. for the development of natural skin whitening formulation. European Journal of Integrative Medicine, 21, 39-42.
Zengin, G., Uysal, A., Güneş, E., & Aktümsek, A. (2014). Survey of phytochemical composition and biological effects of three extracts from a wild plant (Cotoneaster nummularia Fisch. et Mey.): A potential source for functional food ingredients and drug formulations. PLOS ONE, 9(11), e113527.
Zhang, J., Subramanian, S., Zhang, Y., & Yu, O. (2007). Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiology, 144(2), 741-751.