DEVELOPMENT OF A LIBRARY BOOK RECOMMENDATION SYSTEM BY ANALYZING USERS’ BEHAVIORS EMPLOYING THE FP-GROWTH ALGORITHM AND USER PROFILE

Main Article Content

Karn Sappasan
Wongkot Sriurai

Abstract

            This research aimed to generate accurate association rules from library borrowing and returning data using the FP-Growth algorithm, to develop a library book recommendation system using the FP-Growth algorithm combined with user profile data, and to study user evaluation with the book recommendation system. The data used to generate association rules were derived from the borrowing and returning history of Ubon Ratchathani University Library during the academic years 2018 – 2022, totaling 6,630 records. These records were processed to generate association rules using the FP-Growth algorithm via the Weka program, with the confidence level of the rules set at 85%. The research consisted of six main steps: (1) data collection, (2) data preparation, (3) generation of association rules using FP-Growth, (4) creation of user profiles for association rule matching, (5) development of the book recommendation system, and (6) evaluation of user satisfaction. The results showed that the association rules generated using FP-Growth could be effectively applied to develop a book recommendation system, helping to suggest books that are likely to match students’ interests. The evaluation of the recommendation system demonstrated a precision of 73.06%, a recall of 85.60%, and an overall F1-score of 78.67%. Furthermore, the user satisfaction assessment of the system usage by forty students, using a questionnaire, showed that the students had an overall satisfaction mean at the highest level (equation = 4.77, SD. = 0.32). Based on the satisfaction assessment results, it can be concluded that the developed system is effective and can be practically implemented.

Downloads

Download data is not yet available.

Article Details

Section
Research Articles

References

กานต์ สรรพสาร และวงกต ศรีอุไร. (2567). การค้นหากฎความสัมพันธ์โดยใช้อัลกอริทึมอะพริโอริ และเอฟพี-กโรธเพื่อวิเคราะห์พฤติกรรมการใช้ทรัพยากรการเรียนรู้ในห้องสมุด. การประชุมวิชาการระดับชาติด้านคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ครั้งที่ 20, วันที่ 16-17 พฤษภาคม 2567 ณ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ. (หน้า 218-223). กรุงเทพมหานคร: มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ.

บุญชม ศรีสะอาด. (2560). การวิจัยเบื้องต้น. (พิมพ์ครั้งที่ 10). กรุงเทพมหานคร: สุรีริยาสาส์น.

Han, J., Pei, J., & Kamber, M. (2019). Data Mining: Concepts and Techniques. Elsevier.

Harrison, O. E. (2024). Building high-performance web application with NextJS. Computer Science & IT Research Journal, 5(8), 1963-1977.

Jantan, H., Supardi, N., Majid, H. A. M. A., & Bahrin, U. F. M. (2023). Association Rule Mining-Based Food Preferences Analysis Using FP-Growth Method. In International Conference on Intelligence Science. (pp.217-230). Singapore: Springer Nature Singapore.

Kannout, E., Grzegorowski, M., Grodzki, M., & Nguyen, H. S. (2024). Clustering-based frequent pattern mining framework for solving cold-start problem in recommender systems. IEEE Access, 12, 13678-13698.

Kannout, E., Nguyen, H. S., & Grzegorowski, M. (2022). Speeding up recommender systems using association rules. In Asian Conference on Intelligent Information and Database Systems (pp.167-179). Cham: Springer Nature Switzerland.

Lestari, P. A. I., & Cahyani, N. (2023). Application of the association rule method based on book borrowing patterns in Bojonegoro Regional Libraries. Journal of Computer Networks, Architecture and High Performance Computing, 5(2), 751-759.

Loukili, M., Messaoudi, F., & El Ghazi, M. (2023). Machine learning based recommender system for e-commerce. IAES International Journal of Artificial Intelligence, 12(4), 1803-1811.

Obi, J. C. (2023). A comparative study of several classification metrics and their performances on data. World Journal of Advanced Engineering Technology and Sciences, 8(1), 308-314.

Syahrir, M., & Mardedi, L. Z. A. (2023). Determination of the best rule-based analysis results from the comparison of the Fp-Growth, Apriori, and TPQ-Apriori Algorithms for recommendation systems. Matrix: Jurnal Manajemen Teknologi dan Informatika, 13(2), 52-67.

Zahrotun, L., & Jones, A. H. S. (2022). Fp-Growth Algorithm For Searching Book Borrowing Transaction Patterns And Study Program Suitability. IJISTECH (International Journal of Information System and Technology), 5(5), 564-569.