THE INFLUENCE OF SOCIAL ENDORSEMENT ON MESSAGE CREDIBILITY OF HEALTH-RELATED FAKE NEWS ON FACEBOOK IN UNDERGRADUATE STUDENTS

Authors

  • Sethsarut Warutsardsadanun Faculty of Liberal Arts, Thammasat University.
  • Pisit Kaisomsart Faculty of Liberal Arts, Thammasat University.
  • Pitthayut Songdach Faculty of Liberal Arts, Thammasat University.
  • Trawin Chaleeraktrakoon Faculty of Liberal Arts, Thammasat University.

Keywords:

Fake news, Social endorsement, Message credibility

Abstract

        The purpose of this study was to examine the influence of social endorsement on message credibility of health-related fake news on Facebook, using a mixed-method design. Four hundred and twenty-three undergraduate students, who were enrolled in psychology courses at Thammasat University took part in the study. Participants were chosen by convenience sampling and randomly assigned to one of three conditions: high social endorsement, low social endorsement, and control group. All three groups were asked to view twenty health-related news articles, half of which were true and half of which were fake. Participants then assessed each news item’s credibility. Data were analyzed using a two-way mixed-design analysis of variance (ANOVA). Results suggested that the type of news (true news and fake news) affected message credibility in that participants tended to rate true news as being more credible than fake news. This suggests that prior exposure to correct information can affect message credibility ratings. Results also found that social endorsement did not affect message credibility, implying that samples did not assess news articles by heuristic process, despite the presence of heuristic cues. This also implies that the number of likes simply indicates people’s interest in the news. Potential factors influencing message credibility could include other elements on Facebook posts, such as reaction buttons, comments, and shares. Future research might examine the impact of other social cues such as reaction buttons, comments, and shares to clarify if the valence of social endorsement cues literally influences message credibility, making the study more relevant to the actual Facebook context.

References

กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. (2563, 2 พฤศจิกายน). “พุทธิพงษ์” เปิดงานสัมมนาสร้างการรับรู้เท่าทันข่าวปลอมพื้นที่ ภาคใต้. https://www.mdes.go.th/news/detail/3891--พุทธิพงษ์--เปิดงานสัมมนาสร้างการรับรู้เท่าทันข่าวปลอมพื้นที่ภาคใต้

ฐิติพล ปัญญาลิมปนันท์. (2560, 2 ตุลาคม). ข่าวปลอมในไทย: คุณควรกังวลแค่ไหน?. BBC News ไทย. https://www.bbc.com/thai/thailand-41438401

ไทยรัฐออนไลน์. (2564, 16 กรกฎาคม). เผยสถิติ 9 เดือน ไทยแชร์ข่าวปลอม 20 ล้านคน เป็นผู้โพสต์เองเกือบ 6 แสน.https://www.thairath.co.th/news/politic/2142330

สถาบันวิจัยและพัฒนา มหาวิทยาลัยราชภัฏบ้านสมเด็จเจ้าพระยา. (2563, 15 มีนาคม). คน กทม คิดว่าข่าวปลอมจะทำให้เกิดความเข้าใจผิดและนำไปสู่ความขัดแย้ง ร้อยละ 65.5 % 75.7 % เจอข่าวปลอม (Fake News) เจอมากที่สุด ในเฟซบุ๊ค 50.1 % กับเรื่องการเมือง 32.7 %. http://research.bsru.ac.th/คน-กทม-คิดว่าข่าวปลอมจะท/

สำนักงานราชบัณฑิตยสภา. (2563). พจนานุกรมศัพท์นิเทศศาสตร์ ฉบับราชบัณฑิตยสภา. กรุงเทพฯ: สำนักงานราชบัณฑิตยสภา.

Agarwal, N., & Yiliyasi, Y. (2010). Information quality challenges in social media. ICIQ. https://www.semanticscholar.org/paper/Information-quality-challenges-in-social-media- Agarwal-Yiliyasi/ece848ac7435350acdb54a5a661f611f9325cbc1

Appelman, A., & Sundar, S. S. (2016). Measuring Message Credibility. Journalism & Mass Communication Quarterly, 93(1), 59–79.

Bond, R. M., Settle, J. E., Fariss, C. J., Jones, J. J., & Fowler, J. H. (2016). Social Endorsement Cues and Political Participation. Political Communication, 34(2), 261–281.

Brand Buffet. (2560, 17 ตุลาคม). ใจดี โลกสวย เชื่อคนง่าย!!! คนไทย 40% เชื่อข่าวปลอมบนโซเชียลสูงสุดในภูมิภาค.

Chen, S., Duckworth, K., & Chaiken, S. (1999). Motivated Heuristic and Systematic Processing. Psychological Inquiry, 10(1), 44–49.

Clayton, K., Blair, S., Busam, J. A., Forstner, S., Glance, J., Green, G., Kawata, A., Kovvuri, A., Martin, J., Morgan, E., Sandhu, M., Sang, R., Scholz-Bright, R., Welch, A. T., Wolff, A. G., Zhou, A., & Nyhan, B. (2019). Real Solutions for Fake News? Measuring the Effectiveness of General Warnings and Fact-Check Tags in Reducing Belief in False Stories on Social Media. Political Behavior.

Dale, S. (2015). Heuristics and biases. Business Information Review, 32(2), 93–99.

Giudice, K. D. (2010). Crowdsourcing credibility: The impact of audience feedback on Web page credibility. Proceedings of the American Society for Information Science and Technology, 47(1), 1–9.

Guadagno, R. E., Muscanell, N. L., Rice, L. M., & Roberts, N. (2013). Social influence online: The impact of social validation and likability on compliance. Psychology of Popular Media Culture, 2(1), 51–60.

Herfst, J. (2020). Fake news, who’s opinion do we trust? The mass or an authority? [Master’s Thesis]. Tilburg University.

Higdon, N. (2020). The anatomy of fake news: A critical news literacy education. University of California Press.

Lewandowsky, S., Ecker, U. K. H., Seifert, C. M., Schwarz, N., & Cook, J. (2012). Misinformation and Its Correction. Psychological Science in the Public Interest, 13(3), 106–131.

Malhotra, A., Malhotra, C. K., & See, A. (2013). How to create brand engagement on Facebook. MIT Sloan Management Review, 54(2), 18-20.

Merriam-Webster. (2018). Merriam-Webster Dictionary. Merriam-Webster.com.

Messing, S., & Westwood, S. J. (2012). Selective Exposure in the Age of Social Media. Communication Research, 41(8), 1042–1063.

Milord, J. T., & Perry, R. P. (1977). A Methodological Study of Overloadx. The Journal of General Psychology, 97(1), 131–137.

Oh, J., Bellur, S., & Sundar, S. S. (2015). Clicking, Assessing, Immersing, and Sharing: An Empirical Model of User Engagement with Interactive Media. Communication Research, 45(5), 737–763.

Oxford Dictionary. (2017). Oxford Learner’s Dictionaries | Find definitions, translations, and grammar explanations at Oxford Learner’s Dictionaries.

Ozdalga, D. (2018). Fake News and Social Endorsement Cues: Do the Number of Likes, Shares and Comments Influence Engagement with Inaccurate News Articles?. [Master’s Thesis]. Yale University

Pennycook, G., Cannon, T. D., & Rand, D. G. (2018). Prior exposure increases perceived accuracy of fake news. Journal of Experimental Psychology: General, 147(12), 1865–1880.

Pentina, I., & Tarafdar, M. (2014). From “information” to “knowing”: Exploring the role of social media in contemporary news consumption. Computers in Human Behavior, 35, 211–223.

Sakamoto, Y. (2010). The Impact of Collective Opinion on Online Judgment. Proceedings of the Annual Meeting of the Cognitive Science Society, 32.

Salganik, M. J. (2006). Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market. Science, 311(5762), 854–856.

Snelting, T. M. C. (2019). Encouraging critical evaluation on Facebook to fight disinformation [Master’s Thesis]. Radboud Nijmegen University.

Sundar, S. S. (2008). The MAIN model: A heuristic approach to understanding technology effects on credibility.

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science,185(4157), 1124–1131.

Yang, C. C., Chen, H., & Hong, K. (2003). Visualization of large category map for Internet browsing. Decision Support Systems, 35(1), 89–102.

Downloads

Published

2022-09-17