STREAMFLOW SIMULATION BASED ON LAND USE/COVER CHANGE USING INTEGRATED GOOGLE EARTH ENGINE AND SWAT+ IN AN AGRICULTURE-DOMINATED BASIN, NORTHEAST THAILAND

Main Article Content

Isared Kakarndee
Pattara Rirugchart
Nuantip Chaladlert
Pongsak Jindasee

Abstract

Streamflow is a fundamental component of the hydrological cycle, and land use/land cover (LULC) significantly influences runoff processes. This study investigates the impacts of Land Use and Land Cover Change (LUCC) on streamflow in the Upper Songkhram River Basin (USRB), Northeast Thailand using Google Earth Engine (GEE) and the SWAT+ hydrological model. GEE facilitated high accuracy LULC classification (overall accuracy: 83-91%, Kappa coefficient: 0.76-0.85), revealing a marked increase in para rubber plantations and built-up areas, and
a decrease in paddy fields and forests between 2003 and 2023. The calibrated and validated SWAT+ model (NSE: 0.86/0.79, R²: 0.91/0.89, PBIAS: -24.5%/-36.7%) simulated the streamflow changes associated with LUCC. Results indicate a substantial increase in wet season streamflow, particularly in August (28.9 m³/s) and September (25.6 m³/s), primarily due to the decline of paddy fields and their water retention capacity. This study emphasizes the link between land use and hydrology, showcasing the combined utility of GEE and SWAT+ for assessing LUCC impacts. These findings offer valuable insights for sustainable water resource management and land use planning in Thailand and comparable regions worldwide.

Downloads

Download data is not yet available.

Article Details

Section
Research Articles

References

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752.

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4), 413-430.

Alzurqani, S. A., Zurqani, H. A., White, D., Bridges, K., & Jackson, S. (2024). Google Earth Engine application for mapping and monitoring drought patterns and trends: A case study in Arkansas, USA. Ecological Indicators, 168, 112759.

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350.

Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. In Professional Paper.

Ara, Z., Jha, R., & Quaff, A. R. (2023). Critical Appraisal of Satellite Data for Land Use/Land Cover Classification and Change Detection: A Review. Geospatial and Soft Computing Techniques, Singapore.

Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (2007). Large Area Hydrologic Modeling and Assessment Part I: Model Development1. JAWRA Journal of the American Water Resources Association, 34(1), 73-89.

Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., & Srinivasan, R. (2017). Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. JAWRA Journal of the American Water Resources Association, 53(1), 115-130.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

Čerkasova, N., White, M., Arnold, J., Bieger, K., Allen, P., Gao, J., Gambone, M., Meki, M., Kiniry, J., & Gassman, P. W. (2023). Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development. Agricultural Systems, 210.

Chawanda, C. (2022). SWAT+ Toolbox (0.7.6). Zenodo. Retrieved from https://zenodo.org/records/6331716

Chawanda, C. J., Arnold, J., Thiery, W., & van Griensven, A. (2020). Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+. Climatic change, 163(3), 1307-1327.

Chotpantarat, S., & Boonkaewwan, S. (2018). Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrological Sciences Journal, 63(9), 1386-1407.

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46.

Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Transactions of the ASABE, 50(4), 1211-1250.

Gassman, P. W., Sadeghi, A. M., & Srinivasan, R. (2014). Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality, 43(1), 1-8.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.

Guo, Y., Fang, G., Xu, Y. P., Tian, X., & Xie, J. (2020). Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Science of The Total Environment, 710, 136275.

Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, 4(2), 135-143.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850-853.

Her, Y., & Jeong, J. (2018). SWAT+ versus SWAT2012: Comparison of Sub-Daily Urban Runoff Simulations. Transactions of the ASABE, 61(4), 1287-1295.

Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., & Zhu, Z. (2017). Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sensing of Environment, 202, 166-176.

Kadhum, Z. M., Jasim, B. S., & Al-Saedi, A. S. J. (2023). Improving the spectral and spatial resolution of satellite image using geomatics techniques. AIP Conference Proceedings, 2776(1), 040011.

Kakarndee, I., & Kositsakulchai, E. (2020). Comparison between SWAT and SWAT+ for simulating streamflow in a paddy-field-dominated basin, northeast Thailand. The 13th Thai Society of Agricultural Engineering International Conference (TSAE 2020), 187, 1-9.

Kakarndee, I., & Kositsakulchai, E. (2021). Impact of Climate Change on Water Balance in Lam Siao Basin Using SWAT+ Model. Thai Socity of Agricultural Engineering Journal, 29(2), 1-11.

Kim, W., Kanae, S., Agata, Y., & Oki, T. (2005). Simulation of potential impacts of land use/cover changes on surface water fluxes in the Chaophraya river basin, Thailand. Journal of Geophysical Research: Atmospheres, 110(D8), 1-10.

Lozano, P. J. J., & Regan, A. (2018). Land surface satellite remote sensing gap analysis. Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018).

Luo, K., Tao, F., Moiwo, J. P., & Xiao, D. (2016). Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades. Scientific Reports, 6, 33704.

Mbinya Manetu, W., Momanyi Mironga, J., & Haywood Ondiko, J. (2023). Remote Sensing for Land Resources: A Review on Satellites, Data Availability and Applications. American Journal of Remote Sensing, 10(2), 39-49.

Muangthong, S., & Shrestha, S. (2015). Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environmental monitoring and assessment, 187(9), 1-12.

Mutanga, O., & Kumar, L. (2019). Google Earth Engine Applications. Remote Sensing, 11(5).

Näschen, K., Diekkrüger, B., Evers, M., Höllermann, B., Steinbach, S., & Thonfeld, F. (2019). The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios. Sustainability, 11(24), 1-11.

Ninad, M. (2024). A Complete Study of Remote Sensing- Sentinel-2 Satellite Data for Land Use / Land Cover (LULC) Analysis. Panamerican Mathematical Journal, 35(1s), 231-249.

Peng, J., Liu, T., Chen, J., Li, Z., Ling, Y., De Wulf, A., & De Maeyer, P. (2023). The conflicts of agricultural water supply and demand under climate change in a typical arid land watershed of Central Asia. Journal of Hydrology: Regional Studies, 47, 1-16.

Petchprayoon, P., Blanken, P. D., Ekkawatpanit, C., & Hussein, K. (2010). Hydrological impacts of land use/land cover change in a large river basin in central–northern Thailand. International Journal of Climatology, 30(13), 1917-1930.

Qi, Y., Zhang, X., & Yin, Q. (2024). Assessing water resource vulnerability based on remote sensing data-enhanced SWAT+ and High-Resolution precipitation data. Ecological Indicators, 169.

Sain, S. R. (1996). The Nature of Statistical Learning Theory. Technometrics, 38(4), 409-409.

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science, 5(17).

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152-170.

Tyukavina, A., Hansen, M. C., Potapov, P., Parker, D., Okpa, C., Stehman, S. V., Kommareddy, I., & Turubanova, S. (2018). Congo Basin forest loss dominated by increasing smallholder clearing. Sci Adv, 4(11), 1-12.

Velastegui-Montoya, A., Montalván-Burbano, N., Carrión-Mero, P., Rivera-Torres, H., Sadeck, L., & Adami, M. (2023). Google Earth Engine: A Global Analysis and Future Trends. Remote Sensing, 15(14), 1-30.

Wafdan, L. (2021). Accuracy Assessment of Land Use/Land Cover Classification Data from Sentinel-2 & ASTER Imagery Interpretation using Unsupervised Classification Algorithm. Proceeding International Conference on Science and Engineering. (Vol. 4, pp. 229–234). Yogyakarta, Indonesia.

Williams, J. R., Arnold, J. G., Kiniry, J. R., Gassman, P. W., & Green, C. H. (2010). History of model development at Temple, Texas. Hydrological Sciences Journal, 53(5), 948-960.

Woo, S. Y., Jung, C. G., Lee, J. W., & Kim, S. J. (2019). Evaluation of Watershed Scale Aquatic Ecosystem Health by SWAT Modeling and Random Forest Technique. Sustainability, 11(12).

Wu, J., Yen, H., Arnold, J. G., Yang, Y. C. E., Cai, X., White, M. J., Santhi, C., Miao, C., & Srinivasan, R. (2020). Development of reservoir operation functions in SWAT+ for national environmental assessments. Journal of Hydrology, 583. 124556.

Yong, B., Jiang, S., Yuan, F., Liu, X., Singh, V. P., Ren, L., & Yang, X. (2012). Impacts of land use and land cover changes on evapotranspiration and runoff at Shalamulun River watershed, China. Hydrology Research, 43(1-2), 23-37.

Younes, A., Ahmad, A., Hanjag, A. D., & Nair, A. M. (2023). Understanding Dynamics of Land Use & Land Cover Change Using GIS & Change Detection Techniques in Tartous, Syria. European Journal of Geography, 14(3), 20-41.

Zhang, L., Jiang, Y., Yang, M., Wang, H., Dong, N., Wang, H., Liu, X., Chen, L., & Liu, K. (2022). Quantifying the Impacts of Land Use and Cover Change (LUCC) and Climate Change on Discharge and Sediment Load in the Hunhe River Basin, Liaoning Province, Northeast China. Water, 14(5), 1-14.

Zhou, F., Xu, Y., Chen, Y., Xu, C. Y., Gao, Y., & Du, J. (2013). Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J ournal of Hydrology, 485(3), 113-125.

Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2014). Impacts of urbanization on flooding of a coastal urban catchment: a case study of Mumbai City, India. Natural Hazards, 75(1), 887-908.