การประมาณค่าอุณหภูมิพื้นผิวของการใช้ประโยชน์ที่ดินในเทศบาลกาฬสินธุ์โดยใช้ข้อมูลจากดาวเทียม

Main Article Content

ณัฐพร อรรคอำนวย
อนุสรณ์ แสงประจักษ์
ธีรวงศ์ เหล่าสุวรรณ

บทคัดย่อ

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อการประมาณค่าอุณหภูมิพื้นผิวของการใช้ประโยชน์ที่ดินในเทศบาลกาฬสินธุ์ด้วยข้อมูลจากดาวเทียม LANDSAT 8 OLI/TIRS ใน 2 ช่วงเวลาคือปี พ.ศ. 2558 และปี พ.ศ. 2562 วิธีการดำเนินการ 1) ได้นำข้อมูล LANDSAT 8 OLI มาจำแนกการใช้ประโยชน์ที่ดินใน 4 ประเภท ได้แก่ พื้นที่การเกษตร พื้นที่ป่าไม้ พื้นที่ชุมชนเมือง และพื้นที่แหล่งน้ำ 2) นำข้อมูล LANDSAT 8 OLI แบนด์ที่ 4 แบนด์ที่ 5 และ TIRS มาวิเคราะห์อุณหภูมิพื้นผิวโดยใช้อัลกอลิทึมแบบแยกหน้าต่าง ผลการจำแนกการใช้ประโยชน์ที่ดินในปี พ.ศ. 2558 และปี พ.ศ. 2562 พบว่าเทศบาลกาฬสินธุ์ที่มีขนาดพื้นที่ทั้งหมด 16.96 ตร.กม. จำแนกเป็นพื้นที่การเกษตรเท่ากับ  7.607 ตร.กม. และ 5.583 ตร.กม. พื้นที่ป่าไม้เท่ากับ 0.873 ตร.กม. และ 0.551 ตร.กม. พื้นที่ชุมชนเมืองเท่ากับ 16.643 ตร.กม. และ 18.349 ตร.กม.  พื้นที่แหล่งน้ำเท่ากับ 0.359 ตร.กม. และ 0.354 ตร.กม.  ผลการวิเคราะห์อุณหภูมิพื้นผิวพบว่าในปี พ.ศ. 2558 มีอุณหภูมิเฉลี่ยอยู่ที่ 33.49 °C  และค่าอุณหภูมิพื้นผิวของปี พ.ศ.2562 อยู่ที่ 35.36 °C นอกจากนี้จากทั้ง 2 ช่วงเวลายังพบว่าอุณหถูมิพื้นผิวของพื้นที่ชุมชนเมืองจะปรากฎค่าอุณหภูมิพื้นผิวเฉลี่ยสูงสุด รองลงมาคือพื้นที่ป่าไม้ พื้นที่การเกษตร และพื้นที่แหล่งน้ำ


 

Downloads

Download data is not yet available.

Article Details

บท
บทความวิจัย

References

Amraoui, M., Dacamara, C. C., Pereira, & J. M. C. (2010). Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sensing of Environment, 114 (5): 1038-1052.

Barsi J. A., Schott J. R., Hook S.J., Raquenon G., Markham B. L., & Radocinski R.G. (2014). Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11): 11607-11626.

Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F-F., Timmermann, A., Collins, M., Vecchi, G., Lengaigne., M., England M.H., Dommenget, D., & Takahashi, K., Guilyardi, E. (2015). Increased frequency of extreme La Nina events under greenhouse warming. Nature Climate Change, 5(2): 132-137.

Charoentrakulpeeti, W. (2012). Impact of Land Cover on Atmospheric Temperature in Bangkok. NIDA Journal of Environmental Management, 8(1): 1–18.

Chokkuea W. (2019). Spatial-temporal Change of Land Surface Temperature using Satellite Remote Sensing Data. Studia Universitatis “Vasile Goldis” Seria Stiintele Vietii (Life Sciences Series), 29 (2): 65-69.

Du, C., Ren, H., Qin, Q., Meng, J., & Zhao, S. (2015). A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data. Remote Sensing, 7(1): 647-665.

FAO & The World Bank. (2019). Understanding the drought impact of El Niño/La Niña in the grain production areas in Eastern Europe and Central Asia: Russia, Ukraine and Kazakhstan. Rome.

Hally B., Wallace, L., Reinke, K., Jones, S., & Skidmore A. (2018). Advances in active fire detection using a multi-temporal method for next-generation geostationary satellite data. International Journal of Digital Earth, 12(9): 1030-1045.

Khandelwal, S., Goyal, R., Kau, N., & Mathew, A. (2018). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science, 21 (1): 87-94.

Laosuwan, T., Gomasathit, T., & Rotjanakusol, T. (2017). Application of Remote Sensing for Temperature Monitoring: the Technique for Land Surface Temperature Analysis. Journal of Ecological Engineering, 18(3): 53-60.

Mathew, A., Sreekumar, S., Khandelwal, S., Kaul, N., & Kumar, R. (2016). Prediction of surface temperatures for the assessment of urban heat island effect over Ahmedabad city using linear time series model. Energy and Buildings, 128: 605-616.

Rajeshwari A., & Mani N.N. (2014). Estimation of Land Surface Temperature of Dindigul District using Landsat 8 Data. International Journal of Research in Engineering and Technology, 3 (5): 122-126

Ren H., Du C., Liu R., Qin Q., Yan G., Li Z-L., & Meng J. (2015). Atmosphericwater vapor retrieval from Landsat 8 thermal infrared images. J. Geophys. Res.Atmos, 120, 1723.

Rotjanakusol, T., & Laosuwan, T. (2018A). Estimation of land surface temperature using Landsat satellite data: A case study of Mueang Maha Sarakham District, Maha Sarakham Province, Thailand for the years 2006 and 2015. Scientific Review Engineering and Environmental Sciences, 27 (4): 401-409.

Rotjanakusol, T., & Laosuwan, T. (2018B). Inundation Area Investigation Approach using Remote Sensing Technology on 2017 Flooding in Sakon Nakhon Province Thailand. Studia Universitatis “Vasile Goldis” Seria Stiintele Vietii (Life Sciences Series), 28 (4): 159-166.

Santamouris, M., Haddad, S., Saliari, M., Vasilakopoulou, K., Synnefa, A., Paolini, R., Ulpiani, G., Garshasbi, S., & Fiorito, F. (2018). On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy Build, 166: 154–164.

Skokovic, D., Sobrino, J.A., Jimenez-Munoz,J.C., Soria, G., Julien, Y., Mattar, C & Cristobal, J. (2014). Calibration and Validation of land surface temperature for Landsat8-TIRS sensor. Retrieved from https://earth.esa.int/documents/700255/2126408/ESA_Lpve_ Sobrino_2014a.pdf

Sruthi, S., & Mohammed Aslam, M.A. (2015). Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District. Aquatic Procedia, 4: 1258-1264.

Suksabai, K., & Nakhapakorn, K. (2014). Fire Detection Using LANDSAT Thermal Data: In Sai Yok District, Kanchanaburi Province, Thailand. Thai Science and Technology Journal, 22 (4): 462-473.

Uttaruk Y & Laosuwan T. (2016). Application of Geo-informatics and Vegetation Indices to Estimate Above-ground Carbon. Studia Universitatis “Vasile Goldis” Seria Stiintele Vietii (Life Sciences Series), 26 (4): 449-454.

Uttaruk Y & Laosuwan T. (2019). Drought Analysis Using Satellite-Based Data and Spectral Index in Upper Northeastern Thailand. Polish Journal of Environmental Studies, 28(6): 4447-4454.

Wang, M., Zhang, Z., He, G., Wang, G., Long, T., & Peng, Y. (2016). An enhanced single‐channel algorithm for retrieving land surface temperature from Landsat series data, J. Geophys. Res. Atmos., 121: 11, 712–11, 722.

Wong, N.H., & Yu, C. (2005). Study of green areas and urban heat island in a tropical city. Habitat International, 29 (3): 547–558.

Yang, J., & Santamouris, M. (2018). Urban Heat Island and Mitigation Technologies in Asian and Australian Cities - Impact and Mitigation. Urban Science, 2(3):74.

Youneszadeh, S., Amiri, N., Pilesjö, P. (2015). The effect of land use change on land surface temperature in the Netherlands. International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40 (1W5): 745-748.

Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from LANDSAT 8 TIRS: Comparison between radiative transfer equation-based method, split window algorithm and single channel method. J. Remote Sensing, 6 (10): 9829-9852.

Zhou, J., Chen, Y.H., Wang, J.F., & Zhan, W.F. (2011). Maximum nighttime urban heat island (UHI) intensity simulation by integrating remotely sensed data and meteorological observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4: 138–146.