CALCULATION OF TIME-DEPENDENT VELOCITY AND DISPLACEMENT OF A PARTICLE IN PROJECTILE MOTION WITH AIR RESISTANCE, LIFT FORCE, AND EXTERNAL FORCE
Main Article Content
Abstract
This research aimed to study the trajectory of projectile-moving particles of mass under air resistance force, lifting force, and a vertically acting time-dependent external force
on the particles. The velocity and displacement of a particle in projectile motion were calculated as functions of time, both horizontally and vertically. The particle, with a mass
that moved in projectile motion, is subjected to air resistance, lift force, and a time-dependent external sine square force, causing vertical oscillations. A physics model was constructed based on Newton’s second law of motion and was solved using integral methods to determine the velocity and displacement in both horizontal and vertical axes. The time-dependent velocity was found to be directly proportional to the frequency of molecular vibrations of particles and a coefficient of air resistance density.
Downloads
Article Details
Copyright Notice
The copyright of research articles published in the VRU Research and Development Journal Science and Technology Journal belongs to the Research and Development Institute, Valaya Alongkorn Rajabhat University under the Royal Patronage. Reproduction of the content, in whole or in part, is prohibited without prior written permission from the university.
Responsibility
The content published in the VRU Research and Development Journal Science and Technology Journal is the sole responsibility of the author(s). The journal does not assume responsibility for errors arising from the printing process.
References
จุฑามาศ ช้างคำ, ปิยรัตน์ มูลศรี, และอาทิตย์ หู้เต็ม. (2565). แบบจำลองการเคลื่อนที่แบบโพรเจกไทล์ ภายใต้แรงภายนอกที่ขึ้นอยู่กับเวลา. วารสารวิจัยและพัฒนา วไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ สาขาวิทยาศาสตร์และเทคโนโลยี, 17(2), 45-59.
Bradshaw, J. L. (2023). Projectile motion with quadratic drag. American Journal of Physics, 91(4), 258-263.
Dharma, R. P. (2019). Projectile motion using Mathematica. International Science Community Association, 7(3). 7-11.
Ebaid, A., El-Zahar, E. R., Aljohani, A. F., Salah, B., Krid, M., & Machado, J. T. (2019). Analysis of the two-dimensional fractional projectile motion in view of the experimental data. Nonlinear Dynamics, 97, 1711-1720.
Hutem, A., & Kerdmee, S. (2013). Physics Learning Achievement Study: Projectile, using Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University Students. European J of Physics Education, 4, 22-33.
Jeffrey, L.l., Donna, M. G. Comissiong & Karim R. (2014). Modelling the flight characteristics of a soccer ball. American Journal of Physics Education, 8, 4505.
Kantrowitz, R., & Neumann, M. M. (2017). Optimization of Projectile Motion Under Air Resistance Quadratic in Speed. Mediterranean Journal of Mathematics, 14(1).
Kuaykaew, S., Kerdmee, S., Banyenugam, P., Moonsri, P., & Hutem, A. (2016). The Analytical Description of Projectile Motion of Cricket Ball in a Linear Resisting Medium the Storm Force. Applied Mechanics and Materials, 855, 188-191.
Mustafa, T., & Tugce, A. (2020). Exact and approximate solutions to projectile motion in air incorporating Magnus effect. The European Physical Journal Plus, 135, 566.
Pouya, J.l., Patrick, K., Mohammad H., M., & William, W. (2014). Computational aerodynamics of baseball, soccer ball and Volleyball. American Journal of Sports Science, 115-121.
Uddin, N., Mostofa, G., & Rana, S. (2021). NUMERICAL ANALYSIS OF DRAG AND LIFT FORCES ACTING ON LONG RANGE PROJECTILES. International Journal of Academic Research and Reflection, 9(1), 15-27.