A COMPARISON OF THE ANTIBACTERIAL ACTIVITY OF CHITOOLIGOSACCHARIDES PRODUCED BY CHITINASE AND CHITOSANASE EXTRACT FROM SEEDLINGS OF LEUCAENA LEUCOCEPHALA (LAM.) DE WIT
Main Article Content
Abstract
This research aimed to compare the antibacterial activity of chitooligosaccharides (COS) produced by chitinase and chitosanase extracted from two-week-old seedlings of Leucaena leucocephala de Wit. It was observed that COS obtained from chitinase through the hydrolysis of 1 percent weight per volume of colloidal chitin for 0.5 hours contained a percentage of larger molecules such as (GlcNAc)5, (GlcNAc)6, (GlcNAc)7, and (GlcNAc)8, which made up 93.74% of the total. This COS exhibited the strongest inhibition against six bacterial strains, including gram-positive bacteria such as B. cereus ATCC 11778, L. monocytogenes ATCC 15313, and S. aureus ATCC 25923, as well as gram-negative bacteria like E. coli ATCC 25922, P. aeruginosa ATCC 27853, and V. parahaemolyticus ATCC 17802. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both measured at 0.195/0.195, 0.390/0.390, 0.195/0.195, 0.390/0.390, 0.390/0.390, and 0.390/0.390 μg/mL, respectively. For chitosanase, COS obtained from the hydrolysis of one percent weight per volume of chitosan for 0.5 hours contained a percentage of total larger molecules such as (GlcN)5, (GlcN)6, (GlcN)7, and (GlcN)8, accounting for 94.09% of the total. This COS exhibited the strongest inhibition against six bacterial strains, including gram-positive bacteria such as B. cereus ATCC 11778, L. monocytogenes ATCC 15313, and S. aureus ATCC 25923, as well as gram-negative bacteria like E. coli ATCC 25922, P. aeruginosa ATCC 27853, and V. parahaemolyticus ATCC 17802. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both measured at 0.195/0.195, 0.390/0.390, 0.195/0.195, 0.390/0.390, 0.390/0.390, and 0.390/0.390 μg/mL, respectively. Therefore, it can be concluded that COS obtained by digesting one percent chitosan by mass per volume with chitosanase for 0.5 hours exhibited better antibacterial activity than COS obtained by digesting one percent colloidal chitin by mass per volume with chitinase enzyme for 0.5 hours.
Downloads
Article Details
Copyright Notice
The copyright of research articles published in the VRU Research and Development Journal Science and Technology Journal belongs to the Research and Development Institute, Valaya Alongkorn Rajabhat University under the Royal Patronage. Reproduction of the content, in whole or in part, is prohibited without prior written permission from the university.
Responsibility
The content published in the VRU Research and Development Journal Science and Technology Journal is the sole responsibility of the author(s). The journal does not assume responsibility for errors arising from the printing process.
References
มานะ ขาวเมฆ. (2562ก). การต้านอนุมูลอิสระของไคโตโอลิโกแซคคาไรด์ที่ผลิตด้วยไคโตซาเนสจากก้ามปู กระถินบ้าน ข้าว กข.6 และข้าวฟ่าง เคยู 630. วารสารวิจัยและพัฒนาวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ สาขาวิทยาศาสตร์และเทคโนโลยี,14(3), 62-71.
มานะ ขาวเมฆ. (2562ข). การตรวจหา คุณลักษณะ และการยับยั้งเชื้อราของไคโตซาเนสจากพืชไทย. วารสารวิจัยและพัฒนาวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ สาขาวิทยาศาสตร์และเทคโนโลยี, 14(1), 1-10.
มานะ ขาวเมฆ. (2563). ฤทธิ์การยับยั้งเชื้อราของไคโตโอลิโกแซคคาไรด์จากต้นอ่อนก้ามปู กระถินบ้าน ข้าว กข. 6 และข้าวฟ่าง เคยู 630 ที่ผลิตด้วยเอนไซม์ไคติเนส. วารสารวิจัยและพัฒนาวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ สาขาวิทยาศาสตร์และเทคโนโลยี, 15(2), 119-130.
มานะ ขาวเมฆ. (2565). ฤทธิ์การยับยั้งเชื้อแบคทีเรียของไคโตซานโอลิโกแซคคาไรด์ที่ผลิตด้วยเอนไซม์ไคโตซาเนสที่สกัดจากต้นอ่อนก้ามปู. วารสารวิจัยและพัฒนาวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ สาขาวิทยาศาสตร์และเทคโนโลยี, 17(3), 17-31.
มานะ ขาวเมฆ, และวรางคณา เทศทอง. (2564). ฤทธิ์การต้านอนุมูลอิสระของไคโตโอลิโกแซคคาไรด์ที่ผลิตด้วยเอนไซม์ไคติเนสจากกระถินบ้าน. วารสารวิจัยและนวัตกรรมทางวิทยาศาสตร์และเทคโนโลยี, 2(2), 16-27.
Baureithel, K., Felix, G. & Boller, T. (1994). Specific, High Affinity Binding of Chitin Fragments Tomato Cells and Membranes, Competitive Inhibition of Binding by Derivatives of Chitooligosaccharides and a Nod Factor of Rhizobium. Journal of Biological Chemistry, 269(27), 17931-8.
Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A. & Mameri, N. (2012). Antibacterial Activity of Chitin, Chitosan and its Oligomers Prepared from Shrimp Shell Waste. Food Hydrocolloids, 29, 48-56.
Berger, L. R. & Reynold, D. M. (1958). The Chitinase System of a Strain of Griseus. Biochimica et Biophysica Acta, 29(3), 522–534.
Boller, T., Gehri, A., Mauch, F. & Vogeli, U. (1983). Chitinase in Bean Leaves: Induction by Ethylene, Purification, Properties and Possible Function. Planta, 157, 22-31.
Chernin, L. S., Fuente, L. D., Sobolev, L. V., Haran, S., Vorgias, C. E., Oppenheim, A. B. & Chet, I. (1997). Molecular Cloning, Structural Analysis and Expression in Escherichia coli of a Chitinase Gene from Enterobacter agglomerans. Applied and Environmental Microbiology, 63(3), 834–839.
Cockerill, F. R., Hindler, J. A., Wikler, M. A., Patel, J. B., Alder, J. & Powell, M. (2012a). Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-eleventh Edition, CLSI document M02-A11. Vol.32 no.1. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania USA.
Cockerill, F. R., Hindler, J. A., Wikler, M. A., Patel, J. B., Alder, J. & Powell, M. (2012b). Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-ninth Edition. CLSI document M07-A9. Vol.32 no.2. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania USA.
Coelho, J. F., Ferreira, P. C., Alves, P., Cordeiro, R., Fonseca, A. C. & Gois, J. R. (2010). Drug Delivery System: Advanced Technologies Potentially Applicable in Personalized Treatments. EPMA Journal, 1(1), 164-209.
Fukuda, T., Isogawa, D., Takagi, M., Kato-murai, M., Kimoto, H., Kusaoke, H., Ueda, M. & Suye, S.I. (2007). Yeast Cell-Surface Expression of Chitosanase from Paenibacillus fukuinensis. Bioscience Biotechnology and Biochemistry, 71(11), 2845-2847.
Ikigai, H., Nakae T., Hara, Y. & Shimamura,T. (1993). Bactericidal Catechins Damage the Lipid Bilayer. Biochimica et BiophysicaActa, 1147(1), 132–136.
Koga, D., Yoshioka, T. & Arakane, Y. (1998). HPLC Analysis of Anomeric Formation and Cleavage Pattern by Chitinolytic Enzyme. Bioscience, Biotechnology and Biochemistry, 62(8), 1643-1646.
Laokuldiloka, T., Potivasa, T., Kanhaa, N., Surawanga, S., Seesuriyachana, T., Wangtueaia, S., Phimolsiripola, Y., & Regensteina, J. M. (2017). Physicochemical, Antioxidant and Antimicrobial Properties of Chitooligosaccharides Produced Using three Different Enzyme Treatments. Food Bioscience, 18, 28-33.
Lowry, O. H., Rosebrougly N. J., Farr, A. L. & Randall, R. J. (1951). Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry, 193, 256-257.
Moon, C., Seo, D. J., Song, Y. S., Hong, S. H., Choi, S. H. & Jung, W. J. (2017). Antifungal Activity and Patterns of N-acetyl-chitooligosaccharide Degradation via Chitinase Produced from Serratia marcescens PRNK-1. Microbial Pathogenesis, 113, 218–224.
Pillai, C. K. S., Paul, W. & Sharma, C. P. (2009). Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Progress in Polymer Science, 4(2), 641-678.
Rios, J. L. & Recio, M. C. (2005). Medicinal Plants and Antimicrobial Activity. Journal of Ethnopharmacology, 100(1), 80-84.
Senol, M., Nadaroglu, H., Dikbas, N. & Kotan, R. (2014.) Purification of Chitinase enzymes from Bacillus subtilis Bacteria TV-125, Investigation of Kinetic Properties and Antifungal Activity against Fusarium culmorum. Analytical of Clinical Microbiology and Antimicrobials, 13(1), 3-41.
Shibuya, N., Kaku, H., Kuchitsu, K. & Maliarik, M. J. (1993). Identification of a Novel High-Affinity Binding Site for N-acetylchitooligosaccharide Elicitor in the Plasma Membrane Fraction from Suspension-Cultured Rice Cells. Federation of European Biochemical Societies, 329, 75–78.
Tolaimate, A., Desbrieres, J., Rhazi, M. & Alagui, A. (2003) . Contribution to the Preparation of Chitins and Chitosan with Controlled Physic-Chemical Properties. Polymer, 44(26), 7939- 7952.
Tsai, G. J. & Su, W. H. (1999). Antibacterial Activity of Shrimp Chitosan against Escherichia coli. Journal of Food Protection, 62, 239-243.
Tsai, G. J., Wu, Z. Y. & Su, W. H. (2000). Antibacterial Activity of a Chitooligosaccharide Mixture Prepared by Cellulase Digestion of Shrimp Chitosan and Its Application to Milk Preservation. Journal of Food Protection, 63(6), 747-752.
Van Vuuren, S. F. (2008). Antimicrobial Activity of South African Medicinal Plants. Journal of Ethno-pharmacology, 119(3), 462-472.
Yamada, A., Shibuya, N. & Kodama, O. (1993). Induction of Phytolexin Formation in Suspension-cultured Rice by N-Acetyl-chitooligodaccharides. Bioscience Biotechnology and Biochemistry, 57(3), 405-409.
Yan, W., Peigen, Z., Jianxing, Y., Xiaorong, P., Pingping, W., Weiqing, L. & Shendan, T. (2007). Antimicrobial Effect of Chitooligosaccharides Produced by Chitosanase from Pseudomonas CUY8. Asia Pacific Journal of Clinical Nutrition, 16(1), 174-177.