Effect of processing methods on α-amylase and pasting properties of cassava flour
Main Article Content
บทคัดย่อ
Cassava flour is usually produced at household level by various methods and used for direct consumptions in many countries. In this study, cassava flour was prepared by different methods (peeled vs unpeeled, grated vs sliced, pressed vs unpressed and reconstitution of starch and fibrous residues) and their paste viscosity properties were investigated by a Rapid Visco Analyzer (RVA). The results suggest inconsistent paste properties, in particular peak (PV1) and final viscosity (FV1), as influenced by the method of preparation. Paste viscosity properties of these flour samples were further determined in the presence of silver nitrate (AgNO3), i.e. an enzyme inhibitor and less variation in paste properties was observed. The degree of change in peak and final viscosity of flour (DP and DF), which implied the amount of enzyme activity was the lowest in the reconstituted flour, followed by grated-peeled-pressed sample. When considering the paste viscosity of flour without the effect of enzyme, the effect of processing methods on paste viscosity of cassava flour was still observed, presumably caused by the different chemical compositions. Reconstituted flour, with the highest starch content (94.5% dwb) had the highest peak viscosity (356 RVU) while sliced flour samples with the lowest starch contents (81.9-83.5% dwb) had the lowest peak viscosity (257-266 RVU).
Downloads
Article Details
ลิขสิทธิ์บทความวิจัยที่ได้รับการตีพิมพ์เผยแพร่ในวารสารวิจัยและพัฒนา วไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ ถือเป็นกรรมสิทธิ์ของสถาบันวิจัยและพัฒนา มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ ห้ามนำข้อความทั้งหมดหรือบางส่วนไปพิมพ์ซ้ำ เว้นแต่จะได้รับอนุญาตจากมหาวิทยาลัยเป็นลายลักษณ์อักษร
ความรับผิดชอบ เนื้อหาต้นฉบับที่ปรากฏในวารสารวิจัยและพัฒนา วไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ เป็นความรับผิดชอบของผู้นิพนธ์บทความหรือผู้เขียนเอง ทั้งนี้ไม่รวมความผิดพลาดอันเกิดจากเทคนิคการพิมพ์
References
Akingbala, J.O., K.O. Falade and M.A. Ogunjobi. (2011). The effect of root maturity, pre-
process holding and flour storage on quality of cassava biscuits. Food Bioprocess
Technol. 4, 451-457.
Annor-Frempong, I.E., A. Annan-Prah and R. Wiredu. (1996). Cassava as non-conventional
filler in comminuted meat products. Meat science. 44 (3), 193-202.
Charoenkul, N., D. Uttapap, W. Pathipanawat and Y. Takeda. (2011). Physicochemical
characteristics of starches and flours from cassava varieties having different
cooked root textures. LWT–Food Science and Technology, 44 (8), 1774–1781.
Chotineeranat, S., T. Suwansichon, P. Chompreeda, K. Piyachomkwan, V. Vichukit, K. Sriroth
and V. Haruthaithanasan. (2006). Effect of root ages on the quality of low cyanide
cassava flour from Kasetsart 50. Kasetsart Journal: Natural Science, 40, 694–701.
Collado, L. S. and H. Corke. (1999). Heat-moisture treatment effects on sweetpotato
starches differing in amylose content. Food Chemisty, 65, 339-346.
Dixon, M. and E. Webb. (1971). Enzymes. Second ed., Longmans and co. ltd, London, Great
Britain.
Fernandez, A., J. Wenham, D. Dufour and C. C. Wheatley. (1996). The influence of variety
and processing on the physicochemical andfunctional properties of cassava starch
and flour (p. 263-269). In Cassava Flour and Starch: Progress in Research and
Development. International Center for Tropical Agriculture (CIAT). Cali Columbia.
FAO. 2013. Food and Agriculture Organization of the United Nations. The State of Agriculture,
Rome, Italy. Report 20013.
Jones, D. M., D. S. Trim and C. C. Wheatley. (1996). Improving processing technologies for
high-quality cassava flour (p 276-288). In Cassava Flour and Starch: Progress in
Research and Development. International Center for Tropical Agriculture (CIAT).
Cali Columbia.
Kamuf, W., A. Nixon, O. Parker and G. C. Barnum. (2003). Overview of caramel colors.
Cereal Foods World, 42 (2), 64–69.
Lamptey, J. A., E. S. Dawson1, P. N. T. Johnson and G. A. Annor. (2008). Effects of different
processing methods on the nutritional composition and cyanogen content of flour
from cassava varieties in Ghana. Journal of Root Crops, 34 (2), 157-163.
Loreto, A. B. (1992). Cassava flour Processing: ViSCA’s Experience. In Product Development
for Root and Tuber Crops. Vol. I-Asia. Proceedings of the International Workshop,
held April 22-May 1, 1991, at Leyte, Philippines. Eds. G. Scott, S. Wiersema, and
P. I. Ferguson, International Potato Center (CIP), Lima, Peru.
McCleary, B. V., C. C. Gibson and C. C. Mugford. (1997). Measurements of total starch in
cereal products by amyloglucosidase--amylase method. Collaborative study.
Journal of AOAC International, 80, 571-579.
Moorthy, S. N., J. E. Wenham and J. M. V. Blanshard, (1996). Effect of solvent extraction on
the gelatinisation properties of flour and starch of five cassava varieties.
Journal of the Science of Food and Agriculture, 72, 329-336.
Niba, L. L, M. M. Bokanga, F. L. Jackson, D. S. Schilmme and B. W. Li. (2002).
Physicochemical properties and starch granular characteristics of flour from
various Manihot esculenta (cassava) genotypes. Journal of Food Science, 67,
-1705.
Ooye, D.A., G.K. Oso and B.B. Olalumade. (2014). Effects of Different Processing Methods
on the Proximate and Cyanogenic Composition of Flour from Different Cassava
Varieties. Research and Reviews: Journal of Agriculture and Allied Sciences, 3 (3),
-6.
Oti Emmanuel (USAID/CORAF/SONGHAI). (2010). Training manual (draft). Processing of
cassava into gari and high quality cassava flour in West Africa. 17 October 2016.
http://www.coraf.org/database/publication/publication/cassavatrainingmanual.pdf
Padmaja, G. and S. N. Moorthy. (1999). Optimization of process parameters for the
production of edible grade non-toxic cassava flour. In Tropical Tuber Crops in
Food Security and Nutrition. Balagopalan, C., T.V.R. Nayar, S. Sundaresan,
T. Premkumar and K.R. Lakshmi. (eds.), 44-52.
Padonou, W., C. Mestres and M. C. Nago. (2005). The quality of boiled cassava roots:
instrumental characterization and relationship with physicochemical properties
and sensorial properties. Food Chemistry, 89, 261-270.
Richard-Forget, F. C. and F. A. Gauillard. (1997). Oxidation of chlorogenic acid, catechins
and 4-methylcatechol in model solutions by combinations of pear
(Pyrus communis Cv Williams) polyphenol oxidase and peroxidase: A possible
involvement of peroxidase in enzymatic browning. Journal of Agricaltural and
Food Chemistry, 45, 2472–2476.
Sriroth, K., K. Piyachomkwan, S. Chotineeranat, S. Wanlapatit, N. Termvejsayanon and
C. Kijkunasatein. (2009). Industrial development of low-cyanide cassava flour
production by mechanized process in factory. Application date: Sept 24, 2009.
Patent Filing No. 0901004304 (Thailand).
Tangphatsornruang, S., M. Naconsie, C. Thammarongtham and J. Narangajavana. (2005).
Isolation and characterization of an a-amylase gene in cassava
(Manihot esculenta). Plant Physiology and Biochemistry, 43, 821–827.
Yonkoksung, U., S. Chotineeranat, K. Piyachomkwan and K. Sriroth. (2013). Effect of α-
amylase on the paste properties of cassava flour in Thailand. In Proceedings of
Starch Update 2013 the 7th International conference on Starch Technology (pp.
-270), 21-22 November 2013. Bangkok, Thailand.