CALCULATION OF DISTANCE AND EFFECTIVE POTENTIAL OF CHARGED PARTICLES MOVING IN A CENTRAL FORCE FIELD USING POLAR COORDINATE

Main Article Content

Chirawan Saptip
Piyarat Moonsri
Artit Hutem

Abstract

The purpose of this research was to study the behavior of the motion of electric charged particles moving in a central force function of radiusgif.latex?\left&space;(&space;F\left&space;(_{R_{b}}\right&space;)\right&space;) . The study began by building a model of central force function of radius. Then, the orbit equation to calculate the distance of motion charged particles gif.latex?\left&space;(&space;R_{b}\right&space;)  and effective potential gif.latex?\left&space;(&space;{U_{eff}}&space;\right&space;) via central force function of radius. The results are being plotted on a graph by using a computer program where impact of the electric changed particles (gif.latex?q), mass gif.latex?m and variable changes ( gif.latex?u,L,t) can be analyzed and interpreted. The distance of motion charged particles and potential effect of moving electric charged particles in a central force function of radius was found in an ellipse like motion.

Downloads

Download data is not yet available.

Article Details

Section
Research Articles

References

รัชนี รุจิวโรดม. (2558). กลศาสตร์1. สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.

วัชรพงษ์ พลสนาม, และอาทิตย์ หู้เต็ม. (2561). การคำนวณหาระยะทางการเคลื่อนที่และหาค่าพลังงานการเคลื่อนที่ของวิถีวงโคจรของอนุภาค. วารสารวิทยาศาสตร์โลกดาราศาสตร์และอวกาศ, 1(1), 55-63.

Atam, P.A. (1990). Introduction to classical mechanics. Prentice-Hall.

Susan, M.L. (2004). Mathematics for physicists. Thomson Brooks/cole.

Roel, S. (2001). A guided tour of mathematical method. Cambridge university press.

Fung, M.K. (2012). The kepler problem and the isotropic harmonics oscillator. Chiness journal of Physics, 50(5), 713-719.

Hideyuki, I. & Hiroshi, N. (2010). Kepler's quartic curve is implemented by a central force. International Mathematical Forum, 5(3), 139-144.

Edison, A.E., Emmanuel E.E. & John, O.A. (2013). The Modified Theory of Central-Force Motion. IOSR Journal of Applied Physics, 75-82.

Michael, N. (2018). Newton's graphical method for central force orbits. American Journal of Physics, 764-771.

Tikjha, W., Normai, T., Jittburus, U., & Pumila, A. (2018). Periodic with period 4 of a piecewise linear system of differential equations with initial conditions being some points on positive y axis. PSRU Journal of Science and Technology, 3(2), 26-34.