ANTIFUNGAL ACTIVITY OF CHITOOLIGOSACCHARIDES FROM SAMANCA SAMAN (JACQ) MERR., LEUCAENA LEUCOCEPHALA DE WIT, ORYZA SATIVA RD. 6 AND SORGHUM VULGARE KU 630 PRODUCED BY CHITINASE

Main Article Content

Mana Kaomek

Abstract

This research was aimed to study the antifungal activity of chitooligosaccharides from two weeks seedlings, Samanca saman (Jacq) Merr., Leucaena leucocephala de wit, Oryza sativa RD. 6 and Sorghum vulgare KU 630 produced by chitinase with 0.1 molar acetate buffer. The specific activity was 1.6139-19.8040 units/mg. The chitinase from Samanca saman (Jacq) Merr. had the highest specific activity and decreased from Leucaena leucocephala de wit,  Oryza sativa RD. 6 and Sorghum vulgare KU 630, respectively. The optimum pH was extracted from Samanca saman (Jacq) Merr., Leucaena leucocephala de wit, Oryza sativa RD.6 and Sorghum vulgare KU 630 of 3.5, 4.5, 4.5 and 3.0, respectively. The optimum temperature was extracted from Samanca saman (Jacq) Merr., Leucaena leucocephala de wit,  Oryza sativa RD. 6 and Sorghum vulgare KU 630 of 45, 45, 45 and 65 °C, respectively. Chitooligosaccharides obtained from the digestion of chitinase which extracted from Samanca saman (Jacq) Merr., Leucaena leucocephala de wit, Oryza sativa RD. 6 and Sorghum vulgare KU 630 were used for digestion 30 min that had chitooligosaccharides of 1-6 ((GlcNAc)1-6). The small molecules of (GlcNAc)2 and (GlcNAc)3 were increased when the incubation time is increased to 1, 2 and 4 hours, while (GlcNAc)4, (GlcNAc)5 and (GlcNAc)6 were decreased. The large molecules ((GlcNAc)4, (GlcNAc)5 and (GlcNAc)6) of Samanca saman (Jacq) Merr. were incubated for 30 minutes that had the highest and Leucaena leucocephala de wit,  Oryza sativa RD. 6 and Sorghum vulgare KU 630, respectively. Chitooligosaccharides obtained from chitinase of Samanca saman (Jacq) Merr., Leucaena leucocephala de wit,  Oryza sativa RD. 6 and Sorghum vulgare KU 630 were able to inhibit 4 species of Bipolaris oryzae, Curvularia lunata, Magnaporthe oryzae and Setosphaeria oryzae that concentrations of 5-10 micrograms.

Downloads

Download data is not yet available.

Article Details

Section
Research Articles

References

พัชราวรรณ ป้องกัน, และมานะ ขาวเมฆ. (2562). รูปแบบและฤทธิ์การต้านเชื้อราของไคโตโอลิโกแซคคาไรด์
ที่ผลิตด้วยไคติเนสจากข้าวฟ่าง เคยู 630. การประชุมวิชาการระดับชาติ วิทยาศาสตร์และเทคโนโลยีระหว่างสถาบัน ครั้งที่ 7 บูรณาการ วิจัย และนวัตกรรม เพื่อสร้างเสริมสุขภาพ. 7 มิถุนายน 2562. หน้า 704-711.
พุธิตา ภูมิสาคร, และมานะ ขาวเมฆ. (2561). การประเมินคุณลักษณะและกิจกรรมของเอนไซม์ไคติเนสจาก
ต้นอ่อนก้ามปู. การประชุมวิชาการระดับชาติ มหาวิทยาลัยราชภัฏกลุ่มศรีอยุธยา ครั้งที่ 9 วิจัยและนวัตกรรมเพื่อสังคม. 18-19 ตุลาคม 2561. หน้า 472-479.
Baureithel, K., Felix, G. & Boller, T. (1994). Specific, High Affinity Binding of Chitin Fragments Tomato Cells and Membranes, Competitive Inhibition of Binding by Derivatives of Chitooligosaccharides and a Nod Factor of Rhizobium. Journal of Biological Chemistry. 269(27), 17931-17938.
Berger, L. R. & Reynold, D. M. (1958). The Chitinase System of a Strain of Griseus. Biochimica et Biophysica Acta. 29(3), 522–534.
Boller, T., Gehri, A., Mauch, F. & Vogeli, U. (1983). Chitinase in Bean Leaves: Induction by Ethylene, Purification, Properties and Possible Function. Planta. 157, 22-31.
Chernin, L. S., Fuente, L. D., Sobolev, L. V., Haran, S., Vorgias, C. E., Oppenheim, A. B. & Chet, I. (1997). Molecular Cloning, Structural Analysis, and Expression in Escherichia coli of a Chitinase Gene from Enterobacter Agglomerans. Applied and Environmental Microbiology. 63 (3), 834–839.
Coelho, J. F., Ferreira, P. C., Alves, P., Cordeiro, R., Fonseca, A. C., Gois, J.R. & Gill, M. H. (2010). Drug Delivery System: Advanced Technologies Potentially Applicable in Personalized Treatments. EPMA Journal. 1(1), 164-209.
Koga, D., Yoshioka, T. & Arakane, Y. (1998). HPLC Analysis of Anomeric Formation and Cleavage Pattern by Chitinolytic Enzyme. Bioscience, Biotechnology and Biochemistry. 62(8), 1643-1646.
Lievens, B., Houterman, P. M. & Rep, M. (2009). Effector Gene Screening Allows Unambiguous Identification of Fusarium oxysporum f. sp. lycopersici Races and Discrimination from other Formae Specials. FEMS Microbiology Letters. 300(2), 201–215.
Lowry, O. H., Rosebrougly, N. J., Farr, A. L. & Randall, R. J. (1951). Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry. 193, 256-257.
Moon, C., Seo, D. J., Song, Y. S., Hong, S. H., Choi, S. H. & Jung, W. J. (2017). Antifungal Activity and Patterns of N-acetyl-chitooligosaccharide Degradation via Chitinase Produced from Serratia marcescens PRNK-1. Microbial Pathogenesis. 113, 218–224.
Senol, M., Nadaroglu, H., Dikbas, N. & Kotan, R. (2014.) Purification of Chitinase enzymes from Bacillus subtilis Bacteria TV-125, Investigation of Kinetic Properties and Antifungal Activity against Fusarium culmorum. Analytical of Clinical Microbiology and Antimicrobials. 13(1), 3-41.
Shibuya, N., Kaku, H., Kuchitsu, K. & Maliarik, M. J. (1993). Identification of a Novel High-Affinity Binding Site for N-acetylchitooligosaccharide Elicitor in the Plasma Membrane Fraction from Suspension-Cultured Rice Cells. Federation of European Biochemical Societies. 329, 75–78.
Tripathi, P. & Dubey, N. K. (2004). Evaluation of some Essential Oils as Botanical Fungitixicants in Management of Post-harvest Rotting of Citrus Fruits World. Journal of Microbiology and Biotechnology. 20, 317-321.
Yong, H, K., Seur, K. P., Jin, Y. H. & Young, C. K. (2017). Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73.
The Plant Pathology Journal. 33(3), 318-328.